| Metric | Count |
DefinitionswithLpProdAssoc, withLpProdComm, withLpProdCongr, withLpProdUnique, withLpUniqueProd, withLpProdCongr, withLpProdMap, withLpProdAssoc, withLpProdComm, withLpProdCongr, withLpProdUnique, withLpUniqueProd, fst, fstL, fstβ, homeomorphProd, idemFst, idemSnd, instProdBornology, instProdDist, instProdEDist, instProdEMetricSpace, instProdMetricSpace, instProdNorm, instProdNormedAddCommGroup, instProdNormedSpace, instProdPseudoEMetricSpace, instProdPseudoMetricSpace, instProdSeminormedAddCommGroup, instProdTopologicalSpace, instProdUniformSpace, normedAddCommGroupToProd, normedSpaceSeminormedAddCommGroupToProd, prodContinuousLinearEquiv, prodEquivβα΅’, prodPseudoEMetricAux, prodPseudoMetricAux, pseudoMetricSpaceToProd, seminormedAddCommGroupToProd, snd, sndL, sndβ, uniformEquivProd | 43 |
TheoremswithLpProdMap, coe_withLpProdUnique, coe_withLpUniqueProd, withLpProdAssoc_apply, withLpProdAssoc_symm_apply, withLpProdComm_apply, withLpProdComm_symm, withLpProdCongr_apply, withLpProdCongr_symm_apply, withLpProdUnique_apply, withLpProdUnique_symm_apply, withLpUniqueProd_apply, withLpUniqueProd_symm_apply, withLpProdMap_apply, coe_withLpProdUnique, coe_withLpUniqueProd, withLpProdAssoc_apply, withLpProdAssoc_symm_apply, withLpProdComm_apply, withLpProdComm_symm, withLpProdCongr_apply, withLpProdCongr_symm_apply, withLpProdUnique_apply, withLpProdUnique_symm_apply, withLpUniqueProd_apply, withLpUniqueProd_symm_apply, add_fst, add_snd, coe_fstL, coe_sndL, continuous_fst, continuous_snd, dist_fst_le, dist_pseudoMetricSpaceToProd, dist_snd_le, dist_toLp_fst, dist_toLp_snd, edist_fst_le, edist_snd_le, edist_toLp_fst, edist_toLp_snd, enorm_fst_le, enorm_snd_le, fstL_apply, fstβ_apply, idemFst_add_idemSnd, idemFst_apply, idemFst_compl, idemSnd_apply, idemSnd_compl, instProdCompleteSpace, instProdIsBoundedSMul, instProdNormSMulClass, instProdT0Space, isBoundedSMulSeminormedAddCommGroupToProd, isUniformInducing_toLp, neg_fst, neg_snd, nndist_fst_le, nndist_snd_le, nndist_toLp_fst, nndist_toLp_snd, nnnorm_fst_le, nnnorm_seminormedAddCommGroupToProd, nnnorm_snd_le, nnnorm_toLp_inl, nnnorm_toLp_inr, normSMulClassSeminormedAddCommGroupToProd, norm_fst_le, norm_seminormedAddCommGroupToProd, norm_snd_le, norm_toLp_fst, norm_toLp_snd, ofLp_fst, ofLp_snd, prodContinuousLinearEquiv_apply, prodContinuousLinearEquiv_symm_apply, prodContinuousLinearEquiv_symm_apply_ofLp, prod_antilipschitzWith_ofLp, prod_antilipschitzWith_toLp, prod_continuous_ofLp, prod_continuous_toLp, prod_dist_eq_add, prod_dist_eq_card, prod_dist_eq_of_L1, prod_dist_eq_of_L2, prod_dist_eq_sup, prod_edist_comm, prod_edist_eq_add, prod_edist_eq_card, prod_edist_eq_of_L1, prod_edist_eq_of_L2, prod_edist_eq_sup, prod_edist_self, prod_isometry_ofLp_infty, prod_lipschitzWith_ofLp, prod_lipschitzWith_toLp, prod_nndist_eq_add, prod_nndist_eq_of_L1, prod_nndist_eq_of_L2, prod_nndist_eq_sup, prod_nnnorm_eq_add, prod_nnnorm_eq_of_L1, prod_nnnorm_eq_of_L2, prod_nnnorm_eq_sup, prod_nnnorm_ofLp, prod_nnnorm_toLp, prod_norm_eq_add, prod_norm_eq_add_idemFst, prod_norm_eq_card, prod_norm_eq_idemFst_of_L1, prod_norm_eq_idemFst_sup_idemSnd, prod_norm_eq_of_L1, prod_norm_eq_of_L2, prod_norm_eq_of_nat, prod_norm_eq_sup, prod_norm_ofLp, prod_norm_sq_eq_of_L2, prod_norm_toLp, prod_sup_edist_ne_top_aux, prod_uniformContinuous_ofLp, prod_uniformContinuous_toLp, secondCountableTopology, smul_fst, smul_snd, sndL_apply, sndβ_apply, sub_fst, sub_snd, toEquiv_homeomorphProd, toEquiv_uniformEquivProd, toHomeomorph_uniformEquivProd, toLp_fst, toLp_snd, zero_fst, zero_snd | 136 |
| Total | 179 |
| Name | Category | Theorems |
fst π | CompOp | 61 mathmath: MeasureTheory.integrable_prodLp_iff, prod_edist_eq_card, norm_fst_le, Submodule.orthogonalDecomposition_symm_apply, edist_fst_le, prod_nndist_eq_of_L2, MeasureTheory.fst_integral_withLp, ofLp_fst, prod_nnnorm_eq_add, IsometryEquiv.withLpProdUnique_apply, sub_fst, nndist_fst_le, continuous_fst, prod_dist_eq_of_L2, prod_norm_eq_of_nat, prod_nndist_eq_of_L1, zero_fst, prod_edist_eq_of_L2, prod_edist_eq_sup, prod_norm_eq_add, prod_nnnorm_eq_of_L2, prod_nnnorm_eq_of_L1, prod_dist_eq_sup, IsometryEquiv.coe_withLpProdUnique, Submodule.fst_orthogonalDecomposition_apply, prod_nndist_eq_add, prod_norm_eq_of_L1, prod_dist_eq_add, toLp_fst, LinearIsometryEquiv.coe_withLpProdUnique, prod_dist_eq_of_L1, prod_dist_eq_card, nnnorm_fst_le, prod_norm_eq_sup, prod_norm_eq_card, prod_norm_sq_eq_of_L2, smul_fst, prod_edist_eq_of_L1, prod_nndist_eq_sup, neg_fst, prod_nnnorm_eq_sup, LinearIsometryEquiv.withLpProdCongr_apply, MeasureTheory.MemLp.prodLp_fst, IsometryEquiv.withLpProdAssoc_apply, MeasureTheory.memLp_prodLp_iff, add_fst, idemFst_apply, LinearIsometryEquiv.withLpProdUnique_apply, LinearIsometry.withLpProdMap_apply, LinearIsometryEquiv.withLpProdComm_apply, IsometryEquiv.withLpProdAssoc_symm_apply, LinearIsometryEquiv.withLpProdAssoc_apply, IsometryEquiv.withLpProdComm_apply, prod_norm_eq_of_L2, fstL_apply, enorm_fst_le, prod_edist_eq_add, MeasureTheory.Integrable.prodLp_fst, LinearIsometryEquiv.withLpProdAssoc_symm_apply, fstβ_apply, dist_fst_le
|
fstL π | CompOp | 3 mathmath: coe_fstL, Submodule.fstL_comp_coe_orthogonalDecomposition, fstL_apply
|
fstβ π | CompOp | 2 mathmath: coe_fstL, fstβ_apply
|
homeomorphProd π | CompOp | 2 mathmath: toEquiv_homeomorphProd, toHomeomorph_uniformEquivProd
|
idemFst π | CompOp | 7 mathmath: prod_norm_eq_idemFst_of_L1, idemSnd_compl, prod_norm_eq_idemFst_sup_idemSnd, prod_norm_eq_add_idemFst, idemFst_compl, idemFst_add_idemSnd, idemFst_apply
|
idemSnd π | CompOp | 7 mathmath: prod_norm_eq_idemFst_of_L1, idemSnd_compl, prod_norm_eq_idemFst_sup_idemSnd, prod_norm_eq_add_idemFst, idemFst_compl, idemSnd_apply, idemFst_add_idemSnd
|
instProdBornology π | CompOp | β |
instProdDist π | CompOp | 10 mathmath: prod_dist_eq_of_L2, dist_snd_le, prod_dist_eq_sup, dist_toLp_snd, prod_dist_eq_add, prod_dist_eq_of_L1, prod_dist_eq_card, dist_pseudoMetricSpaceToProd, dist_toLp_fst, dist_fst_le
|
instProdEDist π | CompOp | 11 mathmath: prod_edist_eq_card, edist_fst_le, edist_toLp_snd, prod_edist_eq_of_L2, prod_edist_eq_sup, prod_edist_eq_of_L1, prod_edist_self, edist_toLp_fst, prod_edist_eq_add, edist_snd_le, prod_edist_comm
|
instProdEMetricSpace π | CompOp | β |
instProdMetricSpace π | CompOp | β |
instProdNorm π | CompOp | 18 mathmath: norm_fst_le, prod_norm_eq_idemFst_of_L1, prod_norm_toLp, prod_norm_eq_of_nat, prod_norm_ofLp, prod_norm_eq_idemFst_sup_idemSnd, prod_norm_eq_add, prod_norm_eq_add_idemFst, norm_toLp_fst, prod_norm_eq_of_L1, prod_norm_eq_sup, prod_norm_eq_card, prod_norm_sq_eq_of_L2, instProdNormSMulClass, norm_seminormedAddCommGroupToProd, norm_snd_le, norm_toLp_snd, prod_norm_eq_of_L2
|
instProdNormedAddCommGroup π | CompOp | 16 mathmath: MeasureTheory.fst_integral_withLp, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, OrthonormalBasis.prod_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, contDiff_toLp, ProbabilityTheory.indepFun_iff_charFunDual_prod', contDiff_ofLp, analyticOn_toLp, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, MeasureTheory.charFunDual_prod', ProbabilityTheory.HasGaussianLaw.toLp_prodMk, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, MeasureTheory.charFunDual_eq_prod_iff', MeasureTheory.snd_integral_withLp, analyticOn_ofLp
|
instProdNormedSpace π | CompOp | 10 mathmath: MeasureTheory.fst_integral_withLp, contDiff_toLp, ProbabilityTheory.indepFun_iff_charFunDual_prod', contDiff_ofLp, analyticOn_toLp, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, MeasureTheory.charFunDual_prod', MeasureTheory.charFunDual_eq_prod_iff', MeasureTheory.snd_integral_withLp, analyticOn_ofLp
|
instProdPseudoEMetricSpace π | CompOp | 18 mathmath: IsometryEquiv.withLpUniqueProd_symm_apply, IsometryEquiv.withLpProdUnique_apply, prod_isometry_ofLp_infty, Isometry.withLpProdMap, IsometryEquiv.coe_withLpProdUnique, prod_antilipschitzWith_toLp, prod_lipschitzWith_ofLp, prod_lipschitzWith_toLp, IsometryEquiv.withLpProdCongr_apply, IsometryEquiv.coe_withLpUniqueProd, IsometryEquiv.withLpProdUnique_symm_apply, IsometryEquiv.withLpProdAssoc_apply, IsometryEquiv.withLpUniqueProd_apply, IsometryEquiv.withLpProdComm_symm, IsometryEquiv.withLpProdAssoc_symm_apply, IsometryEquiv.withLpProdCongr_symm_apply, IsometryEquiv.withLpProdComm_apply, prod_antilipschitzWith_ofLp
|
instProdPseudoMetricSpace π | CompOp | 9 mathmath: prod_nndist_eq_of_L2, nndist_fst_le, prod_nndist_eq_of_L1, prod_nndist_eq_add, nndist_toLp_snd, prod_nndist_eq_sup, nndist_toLp_fst, instProdIsBoundedSMul, nndist_snd_le
|
instProdSeminormedAddCommGroup π | CompOp | 46 mathmath: MeasureTheory.integrable_prodLp_iff, prod_inner_apply, Submodule.orthogonalDecomposition_symm_apply, Submodule.toLinearEquiv_orthogonalDecomposition_symm, LinearIsometryEquiv.withLpProdComm_symm, nnnorm_toLp_inr, prod_nnnorm_ofLp, Submodule.toLinearEquiv_orthogonalDecomposition, enorm_snd_le, prod_nnnorm_eq_add, Submodule.coe_orthogonalDecomposition_symm, nnnorm_seminormedAddCommGroupToProd, PiLp.sumPiLpEquivProdLpPiLp_symm_apply_ofLp, MeasureTheory.charFun_eq_prod_iff, prod_nnnorm_eq_of_L2, prod_nnnorm_eq_of_L1, Submodule.coe_orthogonalDecomposition, Submodule.fst_orthogonalDecomposition_apply, LinearIsometryEquiv.withLpProdCongr_symm_apply, MeasureTheory.MemLp.of_fst_of_snd_prodLp, ProbabilityTheory.indepFun_iff_charFun_prod, Submodule.sndL_comp_coe_orthogonalDecomposition, nnnorm_toLp_inl, LinearIsometryEquiv.coe_withLpProdUnique, nnnorm_fst_le, prod_nnnorm_eq_sup, nnnorm_snd_le, MeasureTheory.Integrable.of_fst_of_snd_prodLp, LinearIsometryEquiv.withLpProdCongr_apply, LinearIsometryEquiv.withLpProdUnique_symm_apply, MeasureTheory.memLp_prodLp_iff, prod_nnnorm_toLp, LinearIsometryEquiv.withLpProdUnique_apply, Submodule.fstL_comp_coe_orthogonalDecomposition, LinearIsometry.withLpProdMap_apply, Submodule.snd_orthogonalDecomposition_apply, LinearIsometryEquiv.withLpProdComm_apply, LinearIsometryEquiv.withLpProdAssoc_apply, Submodule.orthogonalDecomposition_apply, LinearIsometryEquiv.withLpUniqueProd_apply, MeasureTheory.charFun_prod, enorm_fst_le, LinearIsometryEquiv.withLpUniqueProd_symm_apply, PiLp.sumPiLpEquivProdLpPiLp_apply_ofLp, LinearIsometryEquiv.withLpProdAssoc_symm_apply, LinearIsometryEquiv.coe_withLpUniqueProd
|
instProdTopologicalSpace π | CompOp | 31 mathmath: MeasureTheory.integrable_prodLp_iff, sndL_apply, prodContinuousLinearEquiv_symm_apply, instProdT0Space, Submodule.coe_orthogonalDecomposition_symm, continuous_fst, borelSpace, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, Submodule.coe_orthogonalDecomposition, prodContinuousLinearEquiv_symm_apply_ofLp, coe_fstL, ProbabilityTheory.indepFun_iff_charFunDual_prod', MeasureTheory.MemLp.of_fst_of_snd_prodLp, prod_continuous_toLp, Submodule.sndL_comp_coe_orthogonalDecomposition, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, MeasureTheory.Integrable.of_fst_of_snd_prodLp, MeasureTheory.charFunDual_prod', coe_sndL, MeasureTheory.memLp_prodLp_iff, toEquiv_homeomorphProd, Submodule.fstL_comp_coe_orthogonalDecomposition, ProbabilityTheory.HasGaussianLaw.toLp_prodMk, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, fstL_apply, MeasureTheory.charFunDual_eq_prod_iff', prod_continuous_ofLp, secondCountableTopology, continuous_snd, prodContinuousLinearEquiv_apply
|
instProdUniformSpace π | CompOp | 6 mathmath: toEquiv_uniformEquivProd, instProdCompleteSpace, prod_uniformContinuous_ofLp, isUniformInducing_toLp, toHomeomorph_uniformEquivProd, prod_uniformContinuous_toLp
|
normedAddCommGroupToProd π | CompOp | β |
normedSpaceSeminormedAddCommGroupToProd π | CompOp | β |
prodContinuousLinearEquiv π | CompOp | 8 mathmath: prodContinuousLinearEquiv_symm_apply, Submodule.coe_orthogonalDecomposition_symm, Submodule.coe_orthogonalDecomposition, prodContinuousLinearEquiv_symm_apply_ofLp, ProbabilityTheory.indepFun_iff_charFunDual_prod', MeasureTheory.charFunDual_prod', MeasureTheory.charFunDual_eq_prod_iff', prodContinuousLinearEquiv_apply
|
prodEquivβα΅’ π | CompOp | β |
prodPseudoEMetricAux π | CompOp | β |
prodPseudoMetricAux π | CompOp | β |
pseudoMetricSpaceToProd π | CompOp | 2 mathmath: isBoundedSMulSeminormedAddCommGroupToProd, dist_pseudoMetricSpaceToProd
|
seminormedAddCommGroupToProd π | CompOp | 3 mathmath: nnnorm_seminormedAddCommGroupToProd, normSMulClassSeminormedAddCommGroupToProd, norm_seminormedAddCommGroupToProd
|
snd π | CompOp | 61 mathmath: MeasureTheory.integrable_prodLp_iff, prod_edist_eq_card, Submodule.orthogonalDecomposition_symm_apply, prod_nndist_eq_of_L2, enorm_snd_le, sndL_apply, toLp_snd, smul_snd, prod_nnnorm_eq_add, neg_snd, prod_dist_eq_of_L2, prod_norm_eq_of_nat, prod_nndist_eq_of_L1, MeasureTheory.Integrable.prodLp_snd, prod_edist_eq_of_L2, prod_edist_eq_sup, add_snd, dist_snd_le, prod_norm_eq_add, prod_nnnorm_eq_of_L2, prod_nnnorm_eq_of_L1, prod_dist_eq_sup, prod_nndist_eq_add, prod_norm_eq_of_L1, prod_dist_eq_add, prod_dist_eq_of_L1, prod_dist_eq_card, IsometryEquiv.coe_withLpUniqueProd, prod_norm_eq_sup, MeasureTheory.MemLp.prodLp_snd, sndβ_apply, prod_norm_eq_card, prod_norm_sq_eq_of_L2, prod_edist_eq_of_L1, prod_nndist_eq_sup, prod_nnnorm_eq_sup, idemSnd_apply, nnnorm_snd_le, LinearIsometryEquiv.withLpProdCongr_apply, IsometryEquiv.withLpProdAssoc_apply, IsometryEquiv.withLpUniqueProd_apply, MeasureTheory.memLp_prodLp_iff, sub_snd, zero_snd, norm_snd_le, ofLp_snd, LinearIsometry.withLpProdMap_apply, Submodule.snd_orthogonalDecomposition_apply, LinearIsometryEquiv.withLpProdComm_apply, IsometryEquiv.withLpProdAssoc_symm_apply, LinearIsometryEquiv.withLpProdAssoc_apply, IsometryEquiv.withLpProdComm_apply, LinearIsometryEquiv.withLpUniqueProd_apply, prod_norm_eq_of_L2, prod_edist_eq_add, edist_snd_le, nndist_snd_le, LinearIsometryEquiv.withLpProdAssoc_symm_apply, MeasureTheory.snd_integral_withLp, LinearIsometryEquiv.coe_withLpUniqueProd, continuous_snd
|
sndL π | CompOp | 3 mathmath: sndL_apply, Submodule.sndL_comp_coe_orthogonalDecomposition, coe_sndL
|
sndβ π | CompOp | 2 mathmath: sndβ_apply, coe_sndL
|
uniformEquivProd π | CompOp | 2 mathmath: toEquiv_uniformEquivProd, toHomeomorph_uniformEquivProd
|