Documentation Verification Report

Connected

πŸ“ Source: Mathlib/Analysis/Normed/Module/Connected.lean

Statistics

MetricCount
Definitions0
Theoremsball_contractible, contractibleSpace_ball, contractibleSpace_closedBall, contractibleSpace_closedEBall, contractibleSpace_eball, eball_contractible, isConnected_ball, isConnected_closedBall, isConnected_closedEBall, isConnected_eball, isPathConnected_ball, isPathConnected_closedBall, isPathConnected_closedEBall, isPathConnected_eball, isPreconnected_ball, isPreconnected_closedBall, isPreconnected_closedEBall, isPreconnected_eball, isConnected_compl_of_one_lt_rank, isPathConnected_compl_of_one_lt_rank, connectedComponentIn_eq_self_of_one_lt_codim, isConnected_compl_of_one_lt_codim, isConnected_compl_singleton_of_one_lt_rank, isConnected_sphere, isPathConnected_compl_of_one_lt_codim, isPathConnected_compl_singleton_of_one_lt_rank, isPathConnected_sphere, isPreconnected_sphere
28
Total28

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
ball_contractible πŸ“–mathematicalReal
Real.instLT
Real.instZero
ContractibleSpace
Set.Elem
ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”contractibleSpace_ball
contractibleSpace_ball πŸ“–mathematicalReal
Real.instLT
Real.instZero
ContractibleSpace
Set.Elem
ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Convex.contractibleSpace
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_ball
contractibleSpace_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
ContractibleSpace
Set.Elem
closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Convex.contractibleSpace
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_closedBall
contractibleSpace_closedEBall πŸ“–mathematicalβ€”ContractibleSpace
Set.Elem
closedEBall
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Convex.contractibleSpace
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_closedEBall
PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
contractibleSpace_eball πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
ContractibleSpace
Set.Elem
eball
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Convex.contractibleSpace
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_eball
PseudoEMetricSpace.edist_self
eball_contractible πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
ContractibleSpace
Set.Elem
eball
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”contractibleSpace_eball
isConnected_ball πŸ“–mathematicalReal
Real.instLT
Real.instZero
IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ball
β€”IsPathConnected.isConnected
isPathConnected_ball
isConnected_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedBall
β€”dist_self
isPreconnected_closedBall
isConnected_closedEBall πŸ“–mathematicalβ€”IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedEBall
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”mem_closedEBall_self
isPreconnected_closedEBall
isConnected_eball πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
IsConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
eball
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”IsPathConnected.isConnected
isPathConnected_eball
isPathConnected_ball πŸ“–mathematicalReal
Real.instLT
Real.instZero
IsPathConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ball
β€”Convex.isPathConnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_ball
isPathConnected_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
IsPathConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedBall
β€”Convex.isPathConnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_closedBall
dist_self
isPathConnected_closedEBall πŸ“–mathematicalβ€”IsPathConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedEBall
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”isPathConnected_iff_pathConnectedSpace
ContractibleSpace.instPathConnectedSpace
contractibleSpace_closedEBall
isPathConnected_eball πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
IsPathConnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
eball
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”Convex.isPathConnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_eball
PseudoEMetricSpace.edist_self
isPreconnected_ball πŸ“–mathematicalβ€”IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ball
β€”Convex.isPreconnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_ball
isPreconnected_closedBall πŸ“–mathematicalβ€”IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedBall
β€”Convex.isPreconnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_closedBall
isPreconnected_closedEBall πŸ“–mathematicalβ€”IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
closedEBall
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”Convex.isPreconnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_closedEBall
isPreconnected_eball πŸ“–mathematicalβ€”IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
eball
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”Convex.isPreconnected
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_eball

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_compl_of_one_lt_rank πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
IsConnected
Compl.compl
Set
Set.instCompl
β€”IsPathConnected.isConnected
isPathConnected_compl_of_one_lt_rank
isPathConnected_compl_of_one_lt_rank πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
IsPathConnected
Compl.compl
Set
Set.instCompl
β€”rank_pos_iff_nontrivial
Real.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
LT.lt.trans
zero_lt_one
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
NeZero.charZero_one
Cardinal.instCharZero
Dense.nonempty
Nontrivial.to_nonempty
dense_compl
Real.instCompleteSpace
eq_or_ne
JoinedIn.refl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.sub_eq_eval₃
sub_zero
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_neg
Int.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Module.NF.eq_cons_const
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Ring.add_congr
sub_ne_zero
exists_linearIndependent_pair_of_one_lt_rank
DivisionRing.hasRankNullity
IsNoetherianRing.strongRankCondition
Real.instNontrivial
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Set.countable_setOf_nonempty_of_disjoint
Set.disjoint_iff_inter_eq_empty
Set.inter_assoc
Set.inter_comm
Set.inter_self
Set.subset_empty_iff
Set.inter_subset_inter_left
Eq.subset
Set.instReflSubset
segment_inter_eq_endpoint_of_linearIndependent_of_ne
Real.instIsOrderedRing
Set.inter_subset_right
sub_eq_add_neg
Matrix.cons_val_succ
Matrix.cons_val_fin_one
Units.neg_smul
one_smul
LinearIndependent.units_smul
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
union
JoinedIn.of_segment_subset
Set.subset_compl_iff_disjoint_right
Set.compl_union
JoinedIn.trans
JoinedIn.symm

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponentIn_eq_self_of_one_lt_codim πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
HasQuotient.Quotient
Submodule
Real.semiring
AddCommGroup.toAddCommMonoid
hasQuotient
Real.instRing
Quotient.addCommGroup
Quotient.module
SetLike.instMembership
setLike
connectedComponentIn
Compl.compl
Set
Set.instCompl
SetLike.coe
β€”IsPreconnected.connectedComponentIn
isConnected_compl_of_one_lt_codim

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_compl_of_one_lt_codim πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
HasQuotient.Quotient
Submodule
Real.semiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Real.instRing
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
IsConnected
Compl.compl
Set
Set.instCompl
SetLike.coe
Submodule.setLike
β€”IsPathConnected.isConnected
isPathConnected_compl_of_one_lt_codim
isConnected_compl_singleton_of_one_lt_rank πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
IsConnected
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”IsPathConnected.isConnected
isPathConnected_compl_singleton_of_one_lt_rank
isConnected_sphere πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instLE
Real.instZero
IsConnected
Metric.sphere
β€”IsPathConnected.isConnected
isPathConnected_sphere
isPathConnected_compl_of_one_lt_codim πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
HasQuotient.Quotient
Submodule
Real.semiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Real.instRing
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
IsPathConnected
Compl.compl
Set
Set.instCompl
SetLike.coe
Submodule.setLike
β€”Submodule.exists_isCompl
isPathConnected_compl_of_isPathConnected_compl_zero
IsTopologicalAddGroup.toContinuousAdd
IsCompl.symm
isPathConnected_compl_singleton_of_one_lt_rank
Submodule.topologicalAddGroup
SMulMemClass.continuousSMul
Submodule.smulMemClass
LinearEquiv.rank_eq
isPathConnected_compl_singleton_of_one_lt_rank πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
AddCommGroup.toAddCommMonoid
IsPathConnected
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Set.Countable.isPathConnected_compl_of_one_lt_rank
Set.countable_singleton
isPathConnected_sphere πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instLE
Real.instZero
IsPathConnected
Metric.sphere
β€”LE.le.eq_or_lt
Metric.sphere_zero
isPathConnected_singleton
ContinuousAt.continuousWithinAt
ContinuousAt.add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuousAt_const
ContinuousAt.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousAt.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
ContinuousAt.norm
continuousAt_id
isPathConnected_compl_singleton_of_one_lt_rank
IsPathConnected.image'
Set.Subset.antisymm
add_sub_cancel_left
norm_smul
NormedSpace.toNormSMulClass
norm_mul
NormedDivisionRing.toNormMulClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_inv
norm_norm
mul_assoc
inv_mul_cancelβ‚€
mul_one
LT.lt.ne
sub_self
norm_zero
mem_sphere_iff_norm
mul_inv_cancelβ‚€
LT.lt.ne'
one_smul
add_sub_cancel
isPreconnected_sphere πŸ“–mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instOne
Module.rank
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
IsPreconnected
Metric.sphere
β€”le_or_gt
IsConnected.isPreconnected
isConnected_sphere
Metric.sphere_eq_empty_of_neg
isPreconnected_empty

---

← Back to Index