Documentation Verification Report

FiniteDimension

πŸ“ Source: Mathlib/Analysis/Normed/Module/FiniteDimension.lean

Statistics

MetricCount
DefinitionstoHomeomorphOfFiniteDimensional, toAffineIsometryEquiv, piRing, toLinearIsometryEquiv, lipschitzExtensionConstant
5
Theoremscoe_toHomeomorphOfFiniteDimensional, coe_toHomeomorphOfFiniteDimensional_symm, continuous_of_finiteDimensional, coe_toAffineIsometryEquiv, toAffineIsometryEquiv_apply, antilipschitzWith_of_finiteDimensional, continuous_of_finiteDimensional, lipschitzWith_of_finiteDimensional, closed_of_finiteDimensional, comp_summable, continuous_det, isOpen_injective, of_isCompact_closedBall, of_isCompact_closedBallβ‚€, of_locallyCompactSpace, proper, proper_real, eq_one_or_finiteDimensional, eq_zero_or_finiteDimensional, exists_mem_frontier_infDist_compl_eq_dist, summable_iff, summable_iff_nat, eventually, coe_toLinearIsometryEquiv, toLinearIsometryEquiv_apply, exists_antilipschitzWith, injective_iff_antilipschitz, extend_finite_dimension, continuous_coe_repr, continuous_toMatrix, exists_opNNNorm_le, exists_opNorm_le, opNNNorm_le, opNorm_le, of_locallyCompactSpace, of_locallyCompact_module, norm, continuousOn_clm_apply, continuous_clm_apply, exists_mem_frontier_infDist_compl_eq_dist, exists_norm_le_le_norm_sub_of_finset, exists_seq_norm_le_one_le_norm_sub, exists_seq_norm_le_one_le_norm_sub', instProperSpaceSubtypeMemSubmoduleOfCompleteSpaceOfLocallyCompactSpace, instSecondCountableTopologyContinuousLinearMapIdOfFiniteDimensional, isOpen_setOf_affineIndependent, isOpen_setOf_linearIndependent, isOpen_setOf_nat_le_rank, lipschitzExtensionConstant_def, lipschitzExtensionConstant_pos, summable_norm_iff, summable_norm_mul_geometric_of_norm_lt_one', summable_of_isBigO', summable_of_isBigO_nat', summable_of_isEquivalent, summable_of_isEquivalent_nat, summable_of_sum_range_norm_le
57
Total62

AffineEquiv

Definitions

NameCategoryTheorems
toHomeomorphOfFiniteDimensional πŸ“–CompOp
2 mathmath: coe_toHomeomorphOfFiniteDimensional_symm, coe_toHomeomorphOfFiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomeomorphOfFiniteDimensional πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorphOfFiniteDimensional
AffineEquiv
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
equivLike
β€”β€”
coe_toHomeomorphOfFiniteDimensional_symm πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphOfFiniteDimensional
AffineEquiv
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
equivLike
symm
β€”β€”
continuous_of_finiteDimensional πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
DFunLike.coe
AffineEquiv
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
EquivLike.toFunLike
equivLike
β€”AffineMap.continuous_of_finiteDimensional

AffineIsometry

Definitions

NameCategoryTheorems
toAffineIsometryEquiv πŸ“–CompOp
2 mathmath: coe_toAffineIsometryEquiv, toAffineIsometryEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toAffineIsometryEquiv πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DFunLike.coe
AffineIsometryEquiv
MetricSpace.toPseudoMetricSpace
EquivLike.toFunLike
AffineIsometryEquiv.instEquivLike
toAffineIsometryEquiv
AffineIsometry
instFunLike
β€”β€”
toAffineIsometryEquiv_apply πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DFunLike.coe
AffineIsometryEquiv
MetricSpace.toPseudoMetricSpace
EquivLike.toFunLike
AffineIsometryEquiv.instEquivLike
toAffineIsometryEquiv
AffineIsometry
instFunLike
β€”β€”

AffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitzWith_of_finiteDimensional πŸ“–mathematicalDFunLike.coe
AffineMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
instFunLike
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
β€”LinearMap.injective_iff_antilipschitz
linear_injective_iff
AntilipschitzWith.of_le_mul_dist
dist_eq_norm_vsub
linearMap_vsub
ZeroHomClass.bound_of_antilipschitz
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
continuous_of_finiteDimensional πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
DFunLike.coe
AffineMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
instFunLike
β€”continuous_linear_iff
instIsTopologicalAddTorsor_1
LinearMap.continuous_of_finiteDimensional
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
lipschitzWith_of_finiteDimensional πŸ“–mathematicalβ€”LipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
DFunLike.coe
AffineMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
instFunLike
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
smulCommClass_self
ContinuousSMul.continuousConstSMul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
RingHomIsometric.ids
LipschitzWith.of_dist_le_mul
NormedAddTorsor.dist_eq_norm'
linearMap_vsub
ContinuousLinearMap.le_opNorm

AffineSubspace

Theorems

NameKindAssumesProvesValidatesDepends On
closed_of_finiteDimensional πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
SetLike.coe
AffineSubspace
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
instSetLike
β€”isClosed_direction_iff
instIsTopologicalAddTorsor_1
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Submodule.closed_of_finiteDimensional
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
comp_summable πŸ“–β€”Asymptotics.IsBigO
NormedAddCommGroup.toNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”β€”Summable.of_norm
comp_summable_norm
Summable.norm

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
piRing πŸ“–CompOpβ€”

ContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_det πŸ“–mathematicalβ€”Continuous
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
det
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
LinearMap.det_eq_det_toMatrix_of_finset
Continuous.matrix_det
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
LinearMap.continuous_of_finiteDimensional
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsTopologicalAddGroup.toContinuousAdd
topologicalAddGroup
continuousSMul
RingHomSurjective.ids
RingHomIsometric.ids
IsBoundedSMul.continuousSMul
instIsTopologicalAddGroupMatrix
instContinuousSMulMatrix
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instT2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instModuleFinite
Module.Basis.finiteDimensional_of_finite
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
RingHomCompTriple.ids
LinearMap.det_def
continuous_const
isOpen_injective πŸ“–mathematicalβ€”IsOpen
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
setOf
DFunLike.coe
funLike
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
isOpen_iff_eventually
LinearMap.injective_iff_antilipschitz
RingHomIsometric.ids
eventually_nnnorm_sub_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Filter.mp_mem
Filter.univ_mem'
tsub_pos_of_lt
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
AntilipschitzWith.add_sub_lipschitzWith
lipschitz

FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
of_isCompact_closedBall πŸ“–mathematicalReal
Real.instLT
Real.instZero
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.closedBall
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”of_isCompact_closedBallβ‚€
Metric.vadd_closedBall
NormedAddGroup.to_isIsometricVAdd_left
neg_add_cancel
IsCompact.vadd
IsIsometricVAdd.to_continuousConstVAdd
of_isCompact_closedBallβ‚€ πŸ“–mathematicalReal
Real.instLT
Real.instZero
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.closedBall
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedSpace.toModule
β€”exists_seq_norm_le_one_le_norm_sub
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
NormedField.exists_norm_lt
dist_zero_right
norm_smul
NormedSpace.toNormSMulClass
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
LT.lt.le
norm_nonneg
le_of_lt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
IsUnit.div_mul_cancel
LT.lt.ne'
IsCompact.tendsto_subseq
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
Filter.Tendsto.cauchySeq
Metric.cauchySeq_iff'
lt_irrefl
mul_one
dist_eq_norm
mul_le_mul_of_nonneg_left
ne_of_gt
of_locallyCompactSpace πŸ“–mathematicalβ€”FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Metric.exists_isCompact_closedBall
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
of_isCompact_closedBallβ‚€
proper πŸ“–mathematicalβ€”ProperSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”ProperSpace.of_locallyCompactSpace
RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Pi.topologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
complete_of_proper
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Pi.t2Space
finiteDimensional_pi'
Finite.of_fintype
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
finiteDimensional_self
Module.Projective.of_free
Module.Free.self
Module.finrank_fin_fun
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
AntilipschitzWith.properSpace
RingHomIsometric.ids
pi_properSpace
ContinuousLinearEquiv.antilipschitz
ContinuousLinearEquiv.continuous
ContinuousLinearEquiv.surjective
proper_real πŸ“–mathematicalβ€”ProperSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”proper
locallyCompact_of_proper
instProperSpaceReal

HasCompactMulSupport

Theorems

NameKindAssumesProvesValidatesDepends On
eq_one_or_finiteDimensional πŸ“–mathematicalHasCompactMulSupport
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Continuous
Pi.instOne
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”HasCompactSupport.eq_zero_or_finiteDimensional

HasCompactSupport

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_or_finiteDimensional πŸ“–mathematicalHasCompactSupport
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Continuous
Pi.instZero
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
β€”FiniteDimensional.of_locallyCompactSpace
eq_zero_or_locallyCompactSpace_of_addGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_frontier_infDist_compl_eq_dist πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set
Set.instMembership
frontier
Metric.infDist
Compl.compl
Set.instCompl
Dist.dist
PseudoMetricSpace.toDist
β€”closure_eq_interior_union_frontier
subset_closure
Filter.HasBasis.mem_iff
Metric.nhds_basis_closedBall
mem_interior_iff_mem_nhds
FiniteDimensional.of_isCompact_closedBall
Real.instCompleteSpace
of_isClosed_subset
Metric.isClosed_closedBall
exists_mem_frontier_infDist_compl_eq_dist
ne_univ
RealNormedSpace.noncompactSpace
Metric.infDist_zero_of_mem_closure
frontier_eq_closure_inter_closure
dist_self

IsEquivalent

Theorems

NameKindAssumesProvesValidatesDepends On
summable_iff πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.cofinite
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”summable_of_isEquivalent
Asymptotics.IsEquivalent.symm
summable_iff_nat πŸ“–mathematicalAsymptotics.IsEquivalent
NormedAddCommGroup.toSeminormedAddCommGroup
Filter.atTop
Nat.instPreorder
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”summable_of_isEquivalent_nat
Asymptotics.IsEquivalent.symm

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
eventually πŸ“–mathematicalLinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Filter.Eventually
nhds
Pi.topologicalSpace
β€”nonempty_fintype
RingHomInvPair.ids
AddMonoid.nat_smulCommClass'
IsScalarTower.left
LinearMap.exists_antilipschitzWith
FiniteDimensional.finiteDimensional_pi'
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
tendsto_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.norm
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.tendsto
continuous_apply
tendsto_const_nhds
Filter.Eventually.mono
Filter.Tendsto.eventually
Finset.sum_congr
sub_self
norm_zero
Finset.sum_const_zero
gt_mem_nhds
instOrderTopologyReal
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NNReal.coe_lt_coe
NNReal.coe_sum
LinearMap.ker_eq_bot
AntilipschitzWith.injective
AntilipschitzWith.add_sub_lipschitzWith
LipschitzWith.of_dist_le_mul
RingHomCompTriple.ids
LinearMap.sum_apply
dist_eq_norm
Finset.sum_mul
norm_sum_le_of_le
norm_smul
NormedSpace.toNormSMulClass
mul_comm
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_le_pi_norm
norm_nonneg

LinearIsometry

Definitions

NameCategoryTheorems
toLinearIsometryEquiv πŸ“–CompOp
2 mathmath: coe_toLinearIsometryEquiv, toLinearIsometryEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toLinearIsometryEquiv πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
toLinearIsometryEquiv
LinearIsometry
instFunLike
β€”RingHomInvPair.ids
toLinearIsometryEquiv_apply πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
toLinearIsometryEquiv
LinearIsometry
instFunLike
β€”RingHomInvPair.ids

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
exists_antilipschitzWith πŸ“–mathematicalker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
RingHom.id
Semiring.toNonAssocSemiring
Bot.bot
Submodule
Submodule.instBot
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
DFunLike.coe
LinearMap
instFunLike
β€”subsingleton_or_nontrivial
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
AntilipschitzWith.of_subsingleton
RingHomInvPair.ids
RingHomSurjective.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
RingHomSurjective.invPair
Submodule.topologicalAddGroup
SMulMemClass.continuousSMul
Submodule.smulMemClass
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instT2SpaceSubtype
ker_eq_bot
IsScalarTower.left
RingHomIsometric.ids
ContinuousLinearEquiv.nnnorm_symm_pos
ContinuousLinearEquiv.antilipschitz
injective_iff_antilipschitz πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
instFunLike
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”ker_eq_bot
exists_antilipschitzWith
AntilipschitzWith.injective

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
extend_finite_dimension πŸ“–mathematicalLipschitzOnWith
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
LipschitzWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
lipschitzExtensionConstant
Set.EqOn
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Pi.topologicalAddGroup
instIsTopologicalAddGroupReal
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.instCompleteSpace
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Pi.t2Space
Finite.of_fintype
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule
RingHomIsometric.ids
ContinuousLinearEquiv.lipschitz
LipschitzWith.comp_lipschitzOnWith
extend_pi
LipschitzWith.weaken
LipschitzWith.comp
lipschitzExtensionConstant_def
mul_assoc
mul_le_mul'
NNReal.mulLeftMono
covariant_swap_mul_of_covariant_mul
le_max_left
le_rfl
ContinuousLinearEquiv.symm_apply_apply

Module.Basis

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_coe_repr πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
repr
β€”Module.Finite.of_basis
LinearMap.continuous_of_finiteDimensional
Pi.topologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
RingHomInvPair.ids
continuous_toMatrix πŸ“–mathematicalβ€”Continuous
Matrix
Pi.topologicalSpace
instTopologicalSpaceMatrix
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
toMatrix
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
AddCommGroup.toAddCommMonoid
β€”Module.Finite.of_basis
LinearMap.continuous_of_finiteDimensional
Pi.topologicalAddGroup
instContinuousSMulForall
instIsTopologicalAddGroupMatrix
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulMatrix
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.t2Space
FiniteDimensional.finiteDimensional_pi'
RingHomInvPair.ids
exists_opNNNorm_le πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Preorder.toLE
NNNorm.nnnorm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringNNReal
β€”nonempty_fintype
RingHomIsometric.ids
RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
LT.lt.trans_le
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
le_max_right
LE.le.trans
Finite.of_fintype
opNNNorm_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
NNReal.instIsOrderedRing
le_max_left
zero_le
NNReal.instCanonicallyOrderedAdd
exists_opNorm_le πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.hasOpNorm
Real.instMul
β€”RingHomIsometric.ids
exists_opNNNorm_le
opNNNorm_le πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
Module.Basis
instFunLike
ContinuousLinearMap.toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringNNReal
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.topologicalSpace
SeminormedRing.toPseudoMetricSpace
Pi.addCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Pi.Function.module
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
Pi.seminormedAddCommGroup
Pi.normedSpace
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
equivFunL
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NormedSpace.toIsBoundedSMul
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”ContinuousLinearMap.opNNNorm_le_bound
RingHomIsometric.ids
RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
sum_equivFun
Finset.sum_congr
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
nnnorm_sum_le
nnnorm_smul
NormedSpace.toNormSMulClass
Finset.sum_le_sum
NNReal.addLeftMono
mul_le_mul_right
NNReal.mulLeftMono
Finset.sum_mul
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Pi.sum_nnnorm_apply_le_nnnorm
nsmul_le_nsmul_right
covariant_swap_add_of_covariant_add
ContinuousLinearMap.le_opNNNorm
smul_mul_assoc
IsScalarTower.right
mul_right_comm
opNorm_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
NormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
Module.Basis
instFunLike
ContinuousLinearMap.hasOpNorm
Real.instMul
AddMonoid.toNatSMul
Real.instAddMonoid
Fintype.card
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.topologicalSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Pi.addCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Pi.Function.module
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
Pi.seminormedAddCommGroup
Pi.normedSpace
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
equivFunL
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NormedSpace.toIsBoundedSMul
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
nsmul_eq_mul
RingHomIsometric.ids
NNReal.coe_natCast
NNReal.coe_le_coe
opNNNorm_le

ProperSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_locallyCompactSpace πŸ“–mathematicalβ€”ProperSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”Metric.exists_isCompact_closedBall
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
NormedField.exists_one_lt_norm
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
norm_zero
LE.le.not_gt
zero_le_one
Real.instZeroLEOneClass
smul_closedBall'
smul_zero
norm_pow
NormedDivisionRing.to_normOneClass
IsCompact.smul
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Filter.Tendsto.atTop_mul_const
Real.instIsStrictOrderedRing
tendsto_pow_atTop_atTop_of_one_lt
AddGroup.existsAddOfLE
Real.instArchimedean
of_seq_closedBall
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Eventually.of_forall
of_locallyCompact_module πŸ“–mathematicalβ€”ProperSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
β€”exists_ne
isClosedEmbedding_smul_left
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Topology.IsClosedEmbedding.locallyCompactSpace
of_locallyCompactSpace

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
norm πŸ“–mathematicalSummable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
Real
Real.instAddCommMonoid
Real.pseudoMetricSpace
Norm.norm
NormedAddCommGroup.toNorm
β€”summable_norm_iff

(root)

Definitions

NameCategoryTheorems
lipschitzExtensionConstant πŸ“–CompOp
3 mathmath: lipschitzExtensionConstant_def, LipschitzOnWith.extend_finite_dimension, lipschitzExtensionConstant_pos

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_clm_apply πŸ“–mathematicalβ€”ContinuousOn
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
DFunLike.coe
ContinuousLinearMap.funLike
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.comp_continuousOn
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.continuous
Module.finrank_fin_fun
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingHomInvPair.ids
IsBoundedSMul.continuousSMul
Pi.topologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Pi.t2Space
FiniteDimensional.finiteDimensional_pi'
Finite.of_fintype
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
RingHomCompTriple.ids
ContinuousLinearEquiv.symm_comp_self
ContinuousLinearEquiv.continuous
continuousOn_pi
continuous_clm_apply πŸ“–mathematicalβ€”Continuous
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
DFunLike.coe
ContinuousLinearMap.funLike
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
exists_mem_frontier_infDist_compl_eq_dist πŸ“–mathematicalSet
Set.instMembership
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.infDist
Compl.compl
Set.instCompl
Dist.dist
PseudoMetricSpace.toDist
β€”Metric.exists_mem_closure_infDist_eq_dist
FiniteDimensional.proper_real
Set.nonempty_compl
Metric.closedBall_infDist_compl_subset_closure
Metric.mem_closedBall
ge_of_eq
dist_comm
closure_compl
exists_norm_le_le_norm_sub_of_finset πŸ“–mathematicalReal
Real.instLT
Real.instOne
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instLE
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Submodule.closed_of_finiteDimensional
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Module.Finite.of_fg
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Submodule.ext
riesz_lemma_of_norm_lt
norm_neg
neg_sub
Submodule.subset_span
exists_seq_norm_le_one_le_norm_sub πŸ“–mathematicalFiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
Real
Real.instLT
Real.instOne
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Pairwise
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”NormedField.exists_one_lt_norm
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
exists_seq_norm_le_one_le_norm_sub'
LT.lt.trans
exists_seq_norm_le_one_le_norm_sub' πŸ“–mathematicalReal
Real.instLT
Real.instOne
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instLE
NormedAddCommGroup.toNorm
Pairwise
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”norm_neg
neg_sub
exists_seq_of_forall_finset_exists'
exists_norm_le_le_norm_sub_of_finset
instProperSpaceSubtypeMemSubmoduleOfCompleteSpaceOfLocallyCompactSpace πŸ“–mathematicalβ€”ProperSpace
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
SetLike.instMembership
Submodule.setLike
Subtype.pseudoMetricSpace
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
proper_of_compact
Finite.compactSpace
Subtype.finite
Finite.of_subsingleton
ProperSpace.of_locallyCompact_module
FiniteDimensional.of_locallyCompactSpace
FiniteDimensional.proper
IsScalarTower.left
locallyCompact_of_proper
FiniteDimensional.finiteDimensional_submodule
instSecondCountableTopologyContinuousLinearMapIdOfFiniteDimensional πŸ“–mathematicalβ€”SecondCountableTopology
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
β€”RingHomIsometric.ids
TopologicalSpace.exists_dense_seq
TopologicalSpace.SecondCountableTopology.to_separableSpace
AddTorsor.nonempty
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
Module.Basis.exists_opNorm_le
Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
norm_sub_rev
dist_eq_norm
mem_closure_iff_nhds_basis
Metric.nhds_basis_ball
le_of_lt
Module.Basis.constrL_basis
eq_div_iff
two_ne_zero
CharZero.NeZero.two
mul_comm
mul_assoc
mul_div_cancelβ‚€
ne_of_gt
dist_triangle
Module.Basis.constrL.congr_simp
dist_comm
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Metric.secondCountable_of_countable_discretization
isOpen_setOf_affineIndependent πŸ“–mathematicalβ€”IsOpen
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
setOf
AffineIndependent
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
β€”isEmpty_or_nonempty
isOpen_discrete
Finite.instDiscreteTopology
instT1SpaceForall
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_fintype
affineIndependent_iff_linearIndependent_vsub
nonempty_fintype
IsOpen.preimage
continuous_pi
Continuous.vsub
instIsTopologicalAddTorsor_1
continuous_apply
isOpen_setOf_linearIndependent
Subtype.finite
isOpen_setOf_linearIndependent πŸ“–mathematicalβ€”IsOpen
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
setOf
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
β€”isOpen_iff_mem_nhds
LinearIndependent.eventually
isOpen_setOf_nat_le_rank πŸ“–mathematicalβ€”IsOpen
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
setOf
Cardinal
Cardinal.instLE
Cardinal.instNatCast
LinearMap.rank
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
ContinuousLinearMap.toLinearMap
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
Set.setOf_exists
isOpen_biUnion
continuous_pi
ContinuousLinearMap.continuous
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsOpen.preimage
isOpen_setOf_linearIndependent
Finite.of_fintype
lipschitzExtensionConstant_def πŸ“–mathematicalβ€”lipschitzExtensionConstantβ€”Real.instCompleteSpace
lipschitzExtensionConstant_pos πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
lipschitzExtensionConstant
β€”Real.instCompleteSpace
lipschitzExtensionConstant_def
LT.lt.trans_le
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
le_max_right
summable_norm_iff πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedAddCommGroup.toNorm
SummationFilter.unconditional
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Summable.of_norm
complete_of_proper
FiniteDimensional.proper_real
Summable.abs
Real.instIsOrderedAddMonoid
instIsUniformAddGroupReal
Real.instCompleteSpace
Pi.summable
Summable.of_norm_bounded
summable_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
norm_norm
pi_norm_le_iff_of_nonneg
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
norm_nonneg
Finset.single_le_sum
Finset.mem_univ
RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Finite.of_fintype
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
commRing_strongRankCondition
Real.instNontrivial
Module.Free.of_divisionRing
ContinuousLinearEquiv.summable
RingHomIsometric.ids
Summable.mul_left
ContinuousLinearEquiv.symm_apply_apply
ContinuousLinearMap.le_opNorm
summable_norm_mul_geometric_of_norm_lt_one' πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instOne
Asymptotics.IsBigO
Filter.atTop
Nat.instPreorder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
Monoid.toNatPow
Nat.instMonoid
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SummationFilter.unconditional
β€”exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
summable_of_isBigO_nat
Real.instCompleteSpace
Summable.norm
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
summable_geometric_of_lt_one
LE.le.trans
norm_nonneg
LT.lt.le
Asymptotics.IsBigOWith.isBigO
Asymptotics.IsBigOWith.of_bound
Filter.mp_mem
eventually_norm_pow_le
Filter.univ_mem'
norm_mul
norm_pow
NormedDivisionRing.toNormMulClass
norm_norm
NormedDivisionRing.to_normOneClass
CStarRing.norm_of_mem_unitary
instCStarRingReal
Real.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
one_mul
Nat.cast_pow
Asymptotics.IsBigO.mul
Asymptotics.isBigO_norm_left
Asymptotics.isBigO_norm_right
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.isBigO
isLittleO_pow_const_mul_const_pow_const_pow_of_norm_lt
summable_of_isBigO' πŸ“–β€”Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Filter.cofinite
β€”β€”summable_of_isBigO
Summable.norm
Asymptotics.IsBigO.norm_right
summable_of_isBigO_nat' πŸ“–β€”Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
Asymptotics.IsBigO
NormedAddCommGroup.toNorm
Filter.atTop
Nat.instPreorder
β€”β€”summable_of_isBigO_nat
Summable.norm
Asymptotics.IsBigO.norm_right
summable_of_isEquivalent πŸ“–β€”Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
Asymptotics.IsEquivalent
Filter.cofinite
β€”β€”Summable.trans_sub
SeminormedAddCommGroup.toIsTopologicalAddGroup
summable_of_isBigO'
complete_of_proper
FiniteDimensional.proper_real
Asymptotics.IsLittleO.isBigO
Asymptotics.IsEquivalent.isLittleO
summable_of_isEquivalent_nat πŸ“–β€”Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
Asymptotics.IsEquivalent
Filter.atTop
Nat.instPreorder
β€”β€”Summable.trans_sub
SeminormedAddCommGroup.toIsTopologicalAddGroup
summable_of_isBigO_nat'
complete_of_proper
FiniteDimensional.proper_real
Asymptotics.IsLittleO.isBigO
Asymptotics.IsEquivalent.isLittleO
summable_of_sum_range_norm_le πŸ“–mathematicalReal
Real.instLE
Finset.sum
Real.instAddCommMonoid
Finset.range
Norm.norm
NormedAddCommGroup.toNorm
Summable
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SummationFilter.unconditional
β€”summable_norm_iff
summable_of_sum_range_le
norm_nonneg

---

← Back to Index