Theoremscoe_toHomeomorphOfFiniteDimensional, coe_toHomeomorphOfFiniteDimensional_symm, continuous_of_finiteDimensional, coe_toAffineIsometryEquiv, toAffineIsometryEquiv_apply, antilipschitzWith_of_finiteDimensional, continuous_of_finiteDimensional, lipschitzWith_of_finiteDimensional, closed_of_finiteDimensional, comp_summable, continuous_det, isOpen_injective, of_isCompact_closedBall, of_isCompact_closedBallβ, of_locallyCompactSpace, proper, proper_real, eq_one_or_finiteDimensional, eq_zero_or_finiteDimensional, exists_mem_frontier_infDist_compl_eq_dist, summable_iff, summable_iff_nat, eventually, coe_toLinearIsometryEquiv, toLinearIsometryEquiv_apply, exists_antilipschitzWith, injective_iff_antilipschitz, extend_finite_dimension, continuous_coe_repr, continuous_toMatrix, exists_opNNNorm_le, exists_opNorm_le, opNNNorm_le, opNorm_le, of_locallyCompactSpace, of_locallyCompact_module, norm, continuousOn_clm_apply, continuous_clm_apply, exists_mem_frontier_infDist_compl_eq_dist, exists_norm_le_le_norm_sub_of_finset, exists_seq_norm_le_one_le_norm_sub, exists_seq_norm_le_one_le_norm_sub', instProperSpaceSubtypeMemSubmoduleOfCompleteSpaceOfLocallyCompactSpace, instSecondCountableTopologyContinuousLinearMapIdOfFiniteDimensional, isOpen_setOf_affineIndependent, isOpen_setOf_linearIndependent, isOpen_setOf_nat_le_rank, lipschitzExtensionConstant_def, lipschitzExtensionConstant_pos, summable_norm_iff, summable_norm_mul_geometric_of_norm_lt_one', summable_of_isBigO', summable_of_isBigO_nat', summable_of_isEquivalent, summable_of_isEquivalent_nat, summable_of_sum_range_norm_le | 57 |