Documentation Verification Report

MStructure

πŸ“ Source: Mathlib/Analysis/Normed/Module/MStructure.lean

Statistics

MetricCount
DefinitionsIsLprojection, boundedOrder, distribLattice, inf, instCompl, one, partialOrder, sdiff, sup, zero, instLatticeSubtypeOfFaithfulSMul, IsMprojection
12
TheoremsLcomplement, Lcomplement_iff, Lnorm, coe_bot, coe_compl, coe_inf, coe_one, coe_sdiff, coe_sup, coe_top, coe_zero, commute, compl_mul, distrib_lattice_lemma, join, le_def, mul, mul_compl_self, proj, Mnorm, proj
21
Total33

IsLprojection

Definitions

NameCategoryTheorems
instLatticeSubtypeOfFaithfulSMul πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
Lcomplement πŸ“–mathematicalIsLprojectionSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”IsIdempotentElem.one_sub
proj
add_comm
sub_sub_cancel
Lnorm
Lcomplement_iff πŸ“–mathematicalβ€”IsLprojection
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”Lcomplement
sub_sub_cancel
Lnorm πŸ“–mathematicalIsLprojectionNorm.norm
NormedAddCommGroup.toNorm
Real
Real.instAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
coe_bot πŸ“–mathematicalβ€”IsLprojection
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Subtype.partialOrder
BoundedOrder.toOrderBot
Subtype.boundedOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_compl πŸ“–mathematicalβ€”IsLprojection
Compl.compl
Subtype.instCompl
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
coe_inf πŸ“–mathematicalβ€”IsLprojection
Subtype.inf
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_one πŸ“–mathematicalβ€”IsLprojection
Subtype.one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
coe_sdiff πŸ“–mathematicalβ€”IsLprojection
Subtype.sdiff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
coe_sup πŸ“–mathematicalβ€”IsLprojection
Subtype.sup
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
β€”β€”
coe_top πŸ“–mathematicalβ€”IsLprojection
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Subtype.partialOrder
BoundedOrder.toOrderTop
Subtype.boundedOrder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
coe_zero πŸ“–mathematicalβ€”IsLprojection
Subtype.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
commute πŸ“–mathematicalIsLprojectionCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”FaithfulSMul.eq_of_smul_eq_smul
norm_sub_eq_zero_iff
Lnorm
sub_smul
one_smul
smul_sub
SemigroupAction.mul_smul
IsIdempotentElem.eq
proj
sub_mul
one_mul
sub_self
zero_smul
zero_sub
norm_neg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.subst_into_smul_upcast
Mathlib.Tactic.Abel.term_smulg
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Abel.zero_smulg
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_le_insert'
le_antisymm_iff
Nat.instAtLeastTwoHAddOfNat
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instNontrivial
MulZeroClass.mul_zero
two_mul
two_smul
add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_nonneg
Lcomplement
sub_eq_add_neg
add_mul
Distrib.rightDistribClass
neg_mul
mul_add
Distrib.leftDistribClass
mul_one
mul_neg
mul_assoc
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
sub_eq_zero
add_eq_left
eq_sub_iff_add_eq
compl_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsLprojection
Compl.compl
Subtype.instCompl
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”coe_compl
sub_mul
one_mul
distrib_lattice_lemma πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
IsLprojection
Compl.compl
Subtype.instCompl
β€”add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
mul_assoc
coe_inf
Commute.eq
commute
Subtype.prop
mul_compl_self
MulZeroClass.zero_mul
MulZeroClass.mul_zero
zero_add
add_zero
IsIdempotentElem.eq
proj
join πŸ“–mathematicalIsLprojectionSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
β€”sub_eq_add_neg
mul_add
Distrib.leftDistribClass
mul_one
mul_neg
add_mul
Distrib.rightDistribClass
one_mul
neg_mul
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
Lcomplement_iff
mul
Lcomplement
le_def πŸ“–mathematicalβ€”IsLprojection
Preorder.toLE
PartialOrder.toPreorder
Subtype.partialOrder
Subtype.inf
β€”β€”
mul πŸ“–mathematicalIsLprojectionDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”IsIdempotentElem.mul_of_commute
commute
proj
le_antisymm
add_sub_cancel
norm_add_le
sub_smul
one_smul
Lnorm
add_assoc
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sub_add_sub_cancel'
SemigroupAction.mul_smul
mul_compl_self πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsLprojection
Compl.compl
Subtype.instCompl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coe_compl
IsIdempotentElem.mul_one_sub_self
proj
Subtype.prop
proj πŸ“–mathematicalIsLprojectionIsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”

IsLprojection.Subtype

Definitions

NameCategoryTheorems
boundedOrder πŸ“–CompOp
2 mathmath: IsLprojection.coe_top, IsLprojection.coe_bot
distribLattice πŸ“–CompOpβ€”
inf πŸ“–CompOp
2 mathmath: IsLprojection.coe_inf, IsLprojection.le_def
instCompl πŸ“–CompOp
4 mathmath: IsLprojection.coe_compl, IsLprojection.distrib_lattice_lemma, IsLprojection.mul_compl_self, IsLprojection.compl_mul
one πŸ“–CompOp
1 mathmath: IsLprojection.coe_one
partialOrder πŸ“–CompOp
3 mathmath: IsLprojection.coe_top, IsLprojection.coe_bot, IsLprojection.le_def
sdiff πŸ“–CompOp
1 mathmath: IsLprojection.coe_sdiff
sup πŸ“–CompOp
1 mathmath: IsLprojection.coe_sup
zero πŸ“–CompOp
1 mathmath: IsLprojection.coe_zero

IsMprojection

Theorems

NameKindAssumesProvesValidatesDepends On
Mnorm πŸ“–mathematicalIsMprojectionNorm.norm
NormedAddCommGroup.toNorm
Real
Real.instMax
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SubNegMonoid.toSub
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
proj πŸ“–mathematicalIsMprojectionIsIdempotentElem
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”

(root)

Definitions

NameCategoryTheorems
IsLprojection πŸ“–CompData
13 mathmath: IsLprojection.coe_zero, IsLprojection.coe_compl, IsLprojection.coe_top, IsLprojection.coe_bot, IsLprojection.coe_one, IsLprojection.coe_sdiff, IsLprojection.Lcomplement_iff, IsLprojection.distrib_lattice_lemma, IsLprojection.mul_compl_self, IsLprojection.coe_sup, IsLprojection.coe_inf, IsLprojection.compl_mul, IsLprojection.le_def
IsMprojection πŸ“–CompDataβ€”

---

← Back to Index