Documentation Verification Report

Real

πŸ“ Source: Mathlib/Analysis/Normed/Module/RCLike/Real.lean

Statistics

MetricCount
Definitions0
Theoremssphere_nonempty, punctured_nhds_module_neBot, closure_ball, dist_smul_add_one_sub_smul_le, exists_norm_eq, frontier_ball, frontier_closedBall, frontier_closedBall', frontier_sphere, frontier_sphere', interior_closedBall, interior_closedBall', interior_sphere, interior_sphere', inv_norm_smul_mem_unitClosedBall, nnnorm_surjective, norm_smul_of_nonneg, range_nnnorm, range_norm
19
Total19

NormedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
sphere_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Metric.sphere
SeminormedAddCommGroup.toPseudoMetricSpace
Real
Real.instLE
Real.instZero
β€”Metric.nonempty_closedBall
Set.Nonempty.mono
Metric.sphere_subset_closedBall
exists_norm_eq
add_sub_cancel_left

Real

Theorems

NameKindAssumesProvesValidatesDepends On
punctured_nhds_module_neBot πŸ“–mathematicalβ€”Filter.NeBot
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Module.punctured_nhds_neBot
instIsDomain
NormedField.nhdsNE_neBot
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_ball πŸ“–mathematicalβ€”closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Metric.closedBall
β€”Set.Subset.antisymm
Metric.closure_ball_subset_closedBall
ContinuousWithinAt.fun_add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousAt.continuousWithinAt
ContinuousAt.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuousAt_id'
continuousAt_const
continuousWithinAt_const
one_smul
sub_add_cancel
ContinuousWithinAt.mem_closure
closure_Ico
zero_ne_one
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instZeroLEOneClass
Metric.mem_ball
dist_eq_norm
add_sub_cancel_right
norm_smul
NormedSpace.toNormSMulClass
Real.norm_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_comm
mul_one
LE.le.lt_of_ne
LE.le.trans
norm_nonneg
Metric.mem_closedBall
mul_lt_mul'
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_smul_add_one_sub_smul_le πŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
Real.instSub
β€”dist_eq_norm'
NormedSpace.toNormSMulClass
sub_smul
one_smul
smul_sub
sub_right_comm
Real.norm_eq_abs
abs_eq_self
Real.instIsOrderedAddMonoid
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
sub_le_sub_left
dist_nonneg
sub_zero
one_mul
exists_norm_eq πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
β€”exists_norm_ne_zero
norm_smul
NormedSpace.toNormSMulClass
Real.norm_of_nonneg
norm_inv
norm_norm
inv_mul_cancelβ‚€
mul_one
frontier_ball πŸ“–mathematicalβ€”frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Metric.sphere
β€”frontier.eq_1
closure_ball
IsOpen.interior_eq
Metric.isOpen_ball
Metric.closedBall_diff_ball
frontier_closedBall πŸ“–mathematicalβ€”frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.closedBall
Metric.sphere
β€”frontier.eq_1
Metric.closure_closedBall
interior_closedBall
Metric.closedBall_diff_ball
frontier_closedBall' πŸ“–mathematicalβ€”frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.closedBall
Metric.sphere
β€”frontier.eq_1
Metric.closure_closedBall
interior_closedBall'
Metric.closedBall_diff_ball
frontier_sphere πŸ“–mathematicalβ€”frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.sphere
β€”IsClosed.frontier_eq
Metric.isClosed_sphere
interior_sphere
Set.diff_empty
frontier_sphere' πŸ“–mathematicalβ€”frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.sphere
β€”IsClosed.frontier_eq
Metric.isClosed_sphere
interior_sphere'
Set.diff_empty
interior_closedBall πŸ“–mathematicalβ€”interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.closedBall
Metric.ball
β€”Ne.lt_or_gt
Metric.closedBall_eq_empty
Metric.ball_eq_empty
LT.lt.le
interior_empty
Set.Subset.antisymm
LE.le.lt_or_eq
Metric.mem_closedBall
interior_subset
Set.mem_Icc
abs_le
Real.instIsOrderedAddMonoid
Real.norm_eq_abs
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
dist_eq_norm
one_mul
add_sub_cancel_right
norm_smul
NormedSpace.toNormSMulClass
interior_mono
preimage_interior_subset_interior_preimage
Continuous.fun_add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuous_id'
continuous_const
one_smul
sub_add_cancel
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMinOrderOfNontrivial
Real.instNontrivial
instNoMaxOrderOfNontrivial
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Metric.ball_subset_interior_closedBall
interior_closedBall' πŸ“–mathematicalβ€”interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.closedBall
Metric.ball
β€”eq_or_ne
Metric.closedBall_zero
Metric.ball_zero
interior_singleton
Real.punctured_nhds_module_neBot
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
interior_closedBall
interior_sphere πŸ“–mathematicalβ€”interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.sphere
Set
Set.instEmptyCollection
β€”frontier_closedBall
interior_frontier
Metric.isClosed_closedBall
interior_sphere' πŸ“–mathematicalβ€”interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Metric.sphere
Set
Set.instEmptyCollection
β€”frontier_closedBall'
interior_frontier
Metric.isClosed_closedBall
inv_norm_smul_mem_unitClosedBall πŸ“–mathematicalβ€”Set
Set.instMembership
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Real
Real.instOne
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Norm.norm
SeminormedAddCommGroup.toNorm
β€”norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_norm
Real.instZeroLEOneClass
nnnorm_surjective πŸ“–mathematicalβ€”NNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”NNReal.eq
exists_norm_eq
NNReal.coe_nonneg
norm_smul_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
Real.instMul
β€”norm_smul
NormedSpace.toNormSMulClass
Real.norm_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
range_nnnorm πŸ“–mathematicalβ€”Set.range
NNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Set.univ
β€”Function.Surjective.range_eq
nnnorm_surjective
range_norm πŸ“–mathematicalβ€”Set.range
Real
Norm.norm
SeminormedAddCommGroup.toNorm
Set.Ici
Real.instPreorder
Real.instZero
β€”Set.Subset.antisymm
Set.range_subset_iff
norm_nonneg
exists_norm_eq

---

← Back to Index