Documentation Verification Report

RieszLemma

📁 Source: Mathlib/Analysis/Normed/Module/RieszLemma.lean

Statistics

MetricCount
Definitions0
TheoremsclosedBall_infDist_compl_subset_closure, riesz_lemma, riesz_lemma_of_lt_one, riesz_lemma_of_norm_lt
4
Total4

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
closedBall_infDist_compl_subset_closure 📖mathematicalSet
Set.instMembership
Set.instHasSubset
closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
infDist
Compl.compl
Set.instCompl
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
—eq_or_ne
closedBall_zero'
closure_mono
Set.singleton_subset_iff
closure_ball
ball_infDist_compl_subset

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
riesz_lemma 📖mathematicalSubspace
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.instMembership
Submodule.setLike
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Real
Real.instLT
Real.instOne
Real.instLE
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
—Submodule.zero_mem
lt_of_le_of_ne
Metric.infDist_nonneg
IsClosed.mem_iff_infDist_zero
Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
lt_of_lt_of_le
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsOrderedRing
Real.instNontrivial
le_max_right
lt_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_lt_iff_lt_one_right
Metric.infDist_lt_iff
Submodule.add_mem
sub_eq_add_neg
neg_add_cancel_right
le_of_lt
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_max_left
norm_nonneg
dist_eq_norm
lt_div_iff₀'
Metric.infDist_le_dist_of_mem
sub_sub
riesz_lemma_of_lt_one 📖mathematicalSubspace
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.instMembership
Submodule.setLike
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Real
Real.instLT
Real.instOne
Norm.norm
NormedAddCommGroup.toNorm
Real.instLE
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
—riesz_lemma
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Submodule.smul_mem_iff
IsScalarTower.left
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
norm_smul_inv_norm
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_algebraMap'
NormedDivisionRing.to_normOneClass
norm_norm
Submodule.smul_mem
inv_smul_smul₀
smul_sub
le_inv_mul_iff₀'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
riesz_lemma_of_norm_lt 📖mathematicalReal
Real.instLT
Real.instOne
Norm.norm
NormedField.toNorm
Subspace
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.instMembership
Submodule.setLike
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
AddCommGroup.toAddCommMonoid
Real.instLE
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
—LE.le.trans_lt
norm_nonneg
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
one_mul
riesz_lemma
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
rescale_to_shell
LT.lt.le
smul_smul
mul_inv_cancel₀
one_smul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
norm_smul
NormedSpace.toNormSMulClass
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Submodule.smul_mem
norm_pos_iff
smul_sub

---

← Back to Index