Documentation Verification Report

Banach

πŸ“ Source: Mathlib/Analysis/Normed/Operator/Banach.lean

Statistics

MetricCount
DefinitionsofBijective, toNonlinearRightInverse, NonlinearRightInverse, nnnorm, toFun, coprodSubtypeLEquivOfIsCompl, equivRange, instCoeFunNonlinearRightInverseForall, nonlinearRightInverseOfSurjective, ofIsClosedGraph, ofSeqClosedGraph, toContinuousLinearEquivOfContinuous, instInhabitedNonlinearRightInverseToContinuousLinearMap
13
TheoremsisOpenMap, completeSpace_range_clm, coeFn_ofBijective, coe_ofBijective, ofBijective_apply_symm_apply, ofBijective_symm_apply_apply, bound', right_inv, right_inv', antilipschitz_of_injective_of_isClosed_range, bijective_iff_dense_range_and_antilipschitz, closed_complemented_range_of_isCompl_of_ker_eq_bot, closed_range_of_antilipschitz, closure_preimage, coeFn_ofIsClosedGraph, coeFn_ofSeqClosedGraph, coe_equivRange, coe_linearMap_equivRange, coe_ofIsClosedGraph, coe_ofSeqClosedGraph, equivRange_symm_apply, equivRange_symm_toLinearEquiv, exists_approx_preimage_norm_le, exists_nonlinearRightInverse_of_surjective, exists_preimage_norm_le, frontier_preimage, interior_preimage, isClosed_range_iff_antilipschitz_of_injective, isOpenMap, isQuotientMap, isUnit_iff_bijective, isUnit_iff_isUnit_toLinearMap, nonlinearRightInverseOfSurjective_def, nonlinearRightInverseOfSurjective_nnnorm_pos, range_eq_map_coprodSubtypeLEquivOfIsCompl, coeFn_toContinuousLinearEquivOfContinuous, coeFn_toContinuousLinearEquivOfContinuous_symm, continuous_symm, continuous_of_isClosed_graph, continuous_of_seq_closed_graph
40
Total53

AffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenMap πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
DFunLike.coe
AffineMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddTorsor.toAddTorsor
instFunLike
IsOpenMapβ€”isOpenMap_linear_iff
instIsTopologicalAddTorsor_1
ContinuousLinearMap.isOpenMap
continuous_linear_iff
RingHomInvPair.ids
RingHomIsometric.ids
linear_surjective_iff

AntilipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace_range_clm πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
CompleteSpace
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.invPair
ContinuousLinearMap.toLinearMap
instUniformSpaceSubtype
β€”IsClosed.completeSpace_coe
RingHomSurjective.invPair
isClosed_range
ContinuousLinearMap.uniformContinuous
SeminormedAddCommGroup.to_isUniformAddGroup

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
ofBijective πŸ“–CompOp
4 mathmath: coeFn_ofBijective, ofBijective_symm_apply_apply, coe_ofBijective, ofBijective_apply_symm_apply
toNonlinearRightInverse πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_ofBijective πŸ“–mathematicalLinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.toLinearMap
Bot.bot
Submodule
Submodule.instBot
LinearMap.range
RingHomSurjective.invPair
Top.top
Submodule.instTop
DFunLike.coe
ContinuousLinearEquiv
EquivLike.toFunLike
equivLike
ofBijective
ContinuousLinearMap
ContinuousLinearMap.funLike
β€”RingHomSurjective.invPair
coe_ofBijective πŸ“–mathematicalLinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.toLinearMap
Bot.bot
Submodule
Submodule.instBot
LinearMap.range
RingHomSurjective.invPair
Top.top
Submodule.instTop
toContinuousLinearMap
ofBijective
β€”RingHomSurjective.invPair
ContinuousLinearMap.ext
ofBijective_apply_symm_apply πŸ“–mathematicalLinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.toLinearMap
Bot.bot
Submodule
Submodule.instBot
LinearMap.range
RingHomSurjective.invPair
Top.top
Submodule.instTop
DFunLike.coe
ContinuousLinearMap
ContinuousLinearMap.funLike
ContinuousLinearEquiv
EquivLike.toFunLike
equivLike
symm
ofBijective
β€”RingHomSurjective.invPair
apply_symm_apply
ofBijective_symm_apply_apply πŸ“–mathematicalLinearMap.ker
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.toLinearMap
Bot.bot
Submodule
Submodule.instBot
LinearMap.range
RingHomSurjective.invPair
Top.top
Submodule.instTop
DFunLike.coe
ContinuousLinearEquiv
EquivLike.toFunLike
equivLike
symm
ofBijective
ContinuousLinearMap
ContinuousLinearMap.funLike
β€”RingHomSurjective.invPair
symm_apply_apply

ContinuousLinearMap

Definitions

NameCategoryTheorems
NonlinearRightInverse πŸ“–CompData
1 mathmath: nonlinearRightInverseOfSurjective_def
coprodSubtypeLEquivOfIsCompl πŸ“–CompOp
1 mathmath: range_eq_map_coprodSubtypeLEquivOfIsCompl
equivRange πŸ“–CompOp
4 mathmath: coe_equivRange, equivRange_symm_apply, equivRange_symm_toLinearEquiv, coe_linearMap_equivRange
instCoeFunNonlinearRightInverseForall πŸ“–CompOpβ€”
nonlinearRightInverseOfSurjective πŸ“–CompOp
2 mathmath: nonlinearRightInverseOfSurjective_def, nonlinearRightInverseOfSurjective_nnnorm_pos
ofIsClosedGraph πŸ“–CompOp
2 mathmath: coe_ofIsClosedGraph, coeFn_ofIsClosedGraph
ofSeqClosedGraph πŸ“–CompOp
2 mathmath: coe_ofSeqClosedGraph, coeFn_ofSeqClosedGraph

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitz_of_injective_of_isClosed_range πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”RingHomSurjective.invPair
RingHomInvPair.ids
IsScalarTower.left
RingHomIsometric.ids
AntilipschitzWith.comp
AntilipschitzWith.subtype_coe
ContinuousLinearEquiv.antilipschitz
bijective_iff_dense_range_and_antilipschitz πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
Submodule.topologicalClosure
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
LinearMap.range
RingHomSurjective.invPair
toLinearMap
Top.top
Submodule
Submodule.instTop
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomSurjective.invPair
Dense.closure_eq
Function.Surjective.denseRange
ContinuousLinearEquiv.antilipschitz
AntilipschitzWith.injective
coe_coe
LinearMap.range_eq_top
closed_range_of_antilipschitz
closed_complemented_range_of_isCompl_of_ker_eq_bot πŸ“–mathematicalIsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
LinearMap.ker
Bot.bot
Submodule.instBot
IsClosed
SetLike.coe
Submodule.setLike
β€”RingHomSurjective.ids
RingHomInvPair.ids
IsClosed.completeSpace_coe
range_eq_map_coprodSubtypeLEquivOfIsCompl
Homeomorph.isClosed_image
IsClosed.prod
isClosed_univ
isClosed_singleton
Subtype.t1Space
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
closed_range_of_antilipschitz πŸ“–mathematicalAntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
Submodule.topologicalClosure
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
IsTopologicalAddGroup.toContinuousAdd
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
LinearMap.range
RingHomSurjective.invPair
toLinearMap
β€”UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
RingHomSurjective.invPair
SetLike.ext'_iff
IsClosed.closure_eq
AntilipschitzWith.isClosed_range
uniformContinuous
SeminormedAddCommGroup.to_isUniformAddGroup
closure_preimage πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
closure
Set.preimage
β€”IsOpenMap.preimage_closure_eq_closure_preimage
isOpenMap
continuous
coeFn_ofIsClosedGraph πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
ofIsClosedGraph
LinearMap
LinearMap.instFunLike
β€”β€”
coeFn_ofSeqClosedGraph πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
LinearMap.instFunLike
ContinuousLinearMap
funLike
ofSeqClosedGraph
β€”β€”
coe_equivRange πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
ContinuousLinearEquiv
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.invPair
toLinearMap
instTopologicalSpaceSubtype
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
equivRange
rangeRestrict
β€”RingHomSurjective.invPair
coe_linearMap_equivRange πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
ContinuousLinearEquiv.toContinuousLinearMap
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.invPair
toLinearMap
instTopologicalSpaceSubtype
Submodule.addCommMonoid
Submodule.module
equivRange
rangeRestrict
β€”RingHomSurjective.invPair
coe_ofIsClosedGraph πŸ“–mathematicalβ€”toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ofIsClosedGraph
β€”LinearMap.ext
coe_ofSeqClosedGraph πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
LinearMap.instFunLike
toLinearMap
ofSeqClosedGraph
β€”LinearMap.ext
equivRange_symm_apply πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
ContinuousLinearEquiv
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.invPair
toLinearMap
instTopologicalSpaceSubtype
Submodule.addCommMonoid
Submodule.module
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
equivRange
β€”RingHomSurjective.invPair
equivRange_symm_toLinearEquiv πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
LinearEquiv.symm
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHomSurjective.invPair
toLinearMap
Submodule.addCommMonoid
Submodule.module
ContinuousLinearEquiv.toLinearEquiv
instTopologicalSpaceSubtype
equivRange
LinearEquiv.ofInjective
β€”RingHomSurjective.invPair
exists_approx_preimage_norm_le πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
Real
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Norm.norm
NormedAddCommGroup.toNorm
β€”Set.Subset.antisymm
Set.subset_univ
exists_nat_gt
Real.instIsStrictOrderedRing
Real.instArchimedean
Set.mem_iUnion
subset_closure
Set.mem_image
Metric.mem_ball
dist_eq_norm
sub_zero
nonempty_interior_of_iUnion_of_closed
BaireSpace.of_completelyPseudoMetrizable
TopologicalSpace.IsCompletelyMetrizableSpace.toIsCompletelyPseudoMetrizableSpace
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
EMetric.instIsCountablyGeneratedUniformity
T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
AddTorsor.nonempty
instCountableNat
isClosed_closure
Nat.instAtLeastTwoHAddOfNat
NormedField.exists_one_lt_norm
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
lt_trans
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
eq_or_ne
dist_zero_right
one_div
norm_zero
MulZeroClass.mul_zero
inv_div
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
RingHomIsometric.norm_map
rescale_to_shell
half_pos
norm_pos_iff
add_sub_cancel_left
lt_of_le_of_lt
LT.lt.le
half_lt_self
Metric.mem_closure_iff
dist_self
map_sub
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
norm_sub_le
map_smulβ‚›β‚—
inv_mul_cancelβ‚€
one_smul
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHomCompTriple.comp_apply
RingHomInvPair.triplesβ‚‚
RingHom.id_apply
SemigroupAction.mul_smul
smul_sub
norm_smul
NormedSpace.toNormSMulClass
norm_inv
mul_le_mul_of_nonneg_left
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
one_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
IsStrictOrderedRing.toCharZero
Nat.cast_zero
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
mul_le_mul
IsOrderedRing.toMulPosMono
le_trans
add_le_add
covariant_swap_add_of_covariant_add
norm_nonneg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_mul
exists_nonlinearRightInverse_of_surjective πŸ“–mathematicalLinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
RingHomSurjective.invPair
toLinearMap
Top.top
Submodule
Submodule.instTop
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NonlinearRightInverse.nnnorm
β€”RingHomSurjective.invPair
LT.lt.le
GT.gt.lt
exists_preimage_norm_le
LinearMap.range_eq_top
exists_preimage_norm_le πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Real.instMul
β€”Nat.instAtLeastTwoHAddOfNat
exists_approx_preimage_norm_le
dist_eq_norm
dist_comm
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toCharZero
one_div
pow_zero
one_mul
Function.iterate_succ'
le_trans
pow_succ'
mul_assoc
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Summable.of_nonneg_of_le
norm_nonneg
Summable.mul_right
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_geometric_of_lt_one
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Summable.of_norm
norm_tsum_le_tsum_norm
Summable.tsum_le_tsum
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
summable_geometric_two
tsum_mul_right
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
tsum_geometric_two
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
map_zero
sub_self
Finset.sum_range_succ
map_add
Function.iterate_succ_apply'
sub_add
HasSum.tendsto_sum_nat
Summable.hasSum
Filter.Tendsto.comp
Continuous.tendsto
continuous
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_const_nhds
tendsto_iff_norm_sub_tendsto_zero
sub_zero
squeeze_zero
MulZeroClass.zero_mul
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
tendsto_pow_atTop_nhds_zero_of_lt_one
AddGroup.existsAddOfLE
Real.instArchimedean
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
tendsto_nhds_unique
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
frontier_preimage πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
frontier
Set.preimage
β€”IsOpenMap.preimage_frontier_eq_frontier_preimage
isOpenMap
continuous
interior_preimage πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
interior
Set.preimage
β€”IsOpenMap.preimage_interior_eq_interior_preimage
isOpenMap
continuous
isClosed_range_iff_antilipschitz_of_injective πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
IsClosed
Set.range
AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”antilipschitz_of_injective_of_isClosed_range
AntilipschitzWith.isClosed_range
uniformContinuous
SeminormedAddCommGroup.to_isUniformAddGroup
isOpenMap πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
IsOpenMapβ€”exists_preimage_norm_le
Metric.isOpen_iff
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
map_add
add_sub_cancel
dist_self_add_left
mul_lt_mul_of_pos_left
dist_eq_norm
Metric.mem_ball
mul_div_cancelβ‚€
ne_of_gt
Set.mem_image_of_mem
isQuotientMap πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
funLike
Topology.IsQuotientMapβ€”IsOpenMap.isQuotientMap
isOpenMap
continuous
isUnit_iff_bijective πŸ“–mathematicalβ€”IsUnit
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
MonoidWithZero.toMonoid
monoidWithZero
Function.Bijective
DFunLike.coe
funLike
β€”ContinuousLinearEquiv.bijective
RingHomInvPair.ids
RingHomIsometric.ids
RingHomSurjective.invPair
isUnit_iff_isUnit_toLinearMap πŸ“–mathematicalβ€”IsUnit
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
MonoidWithZero.toMonoid
monoidWithZero
LinearMap
Module.End.instMonoid
toLinearMap
β€”isUnit_iff_bijective
Module.End.isUnit_iff
nonlinearRightInverseOfSurjective_def πŸ“–mathematicalLinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
toLinearMap
Top.top
Submodule
Submodule.instTop
nonlinearRightInverseOfSurjective
NonlinearRightInverse
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NonlinearRightInverse.nnnorm
exists_nonlinearRightInverse_of_surjective
β€”exists_nonlinearRightInverse_of_surjective
RingHomSurjective.invPair
nonlinearRightInverseOfSurjective_nnnorm_pos πŸ“–mathematicalLinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
RingHomSurjective.invPair
toLinearMap
Top.top
Submodule
Submodule.instTop
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NonlinearRightInverse.nnnorm
nonlinearRightInverseOfSurjective
β€”RingHomSurjective.invPair
exists_nonlinearRightInverse_of_surjective
nonlinearRightInverseOfSurjective_def
range_eq_map_coprodSubtypeLEquivOfIsCompl πŸ“–mathematicalIsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
toLinearMap
LinearMap.ker
Bot.bot
Submodule.instBot
Submodule.map
SetLike.instMembership
Submodule.setLike
Prod.instAddCommMonoid
Submodule.addCommMonoid
Prod.instModule
Submodule.module
instTopologicalSpaceProd
instTopologicalSpaceSubtype
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
coprodSubtypeLEquivOfIsCompl
Submodule.prod
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
RingHomInvPair.ids
coprodSubtypeLEquivOfIsCompl.eq_1
ContinuousLinearEquiv.coe_ofBijective
coe_coprod
LinearMap.coprod_map_prod
Submodule.map_bot
sup_bot_eq
Submodule.map_top

ContinuousLinearMap.NonlinearRightInverse

Definitions

NameCategoryTheorems
nnnorm πŸ“–CompOp
6 mathmath: ApproximatesLinearOn.surjOn_closedBall_of_nonlinearRightInverse, ContinuousLinearMap.exists_nonlinearRightInverse_of_surjective, bound, ContinuousLinearMap.nonlinearRightInverseOfSurjective_def, ContinuousLinearMap.nonlinearRightInverseOfSurjective_nnnorm_pos, bound'
toFun πŸ“–CompOp
4 mathmath: bound, right_inv, right_inv', bound'

Theorems

NameKindAssumesProvesValidatesDepends On
bound' πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
toFun
Real.instMul
NNReal.toReal
nnnorm
β€”β€”
right_inv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
toFun
β€”right_inv'
right_inv' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
ContinuousLinearMap.funLike
toFun
β€”β€”

LinearEquiv

Definitions

NameCategoryTheorems
toContinuousLinearEquivOfContinuous πŸ“–CompOp
2 mathmath: coeFn_toContinuousLinearEquivOfContinuous, coeFn_toContinuousLinearEquivOfContinuous_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_toContinuousLinearEquivOfContinuous πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
ContinuousLinearEquiv
ContinuousLinearEquiv.equivLike
toContinuousLinearEquivOfContinuous
β€”β€”
coeFn_toContinuousLinearEquivOfContinuous_symm πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
ContinuousLinearEquiv
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
toContinuousLinearEquivOfContinuous
symm
β€”β€”
continuous_symm πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
symmβ€”continuous_def
image_eq_preimage_symm
coe_coe
ContinuousLinearMap.isOpenMap
surjective

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of_isClosed_graph πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
instFunLike
β€”RingHomInvPair.ids
RingHomSurjective.invPair
RingHomCompTriple.ids
RingHomSurjective.ids
graph_eq_range_prod
Prod.isScalarTower
IsScalarTower.left
RingHomIsometric.ids
completeSpace_coe_iff_isComplete
IsClosed.isComplete
CompleteSpace.prod
Continuous.fst
continuous_subtype_val
Continuous.snd
Continuous.comp
ContinuousLinearEquiv.continuous
continuous_of_seq_closed_graph πŸ“–mathematicalDFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
instFunLike
Continuousβ€”continuous_of_isClosed_graph
IsSeqClosed.isClosed
FrechetUrysohnSpace.to_sequentialSpace
FirstCountableTopology.frechetUrysohnSpace
TopologicalSpace.instFirstCountableTopologyProd
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
Filter.Tendsto.comp
Continuous.tendsto
continuous_fst
continuous_snd

(root)

Definitions

NameCategoryTheorems
instInhabitedNonlinearRightInverseToContinuousLinearMap πŸ“–CompOpβ€”

---

← Back to Index