Documentation Verification Report

Basic

šŸ“ Source: Mathlib/Analysis/Normed/Operator/Basic.lean

Statistics

MetricCount
DefinitionshasOpNorm, opNorm, restrictScalarsIsometry, seminorm, toNormedAlgebra, toNormedSpace, toPseudoMetricSpace, toSeminormedAddCommGroup, toSeminormedRing, toSpanSingleton
10
Theoremsbounds_bddBelow, bounds_nonempty, coe_restrictScalarsIsometry, dist_le_opNorm, ebound, homothety_norm, isLeast_opNorm, le_of_opNorm_le, le_of_opNorm_le_of_le, le_opNorm, le_opNorm_enorm, le_opNorm_of_le, lipschitzWith_of_opNorm_le, nnbound, nnnorm_id, normOneClass, norm_def, norm_id, norm_id_le, norm_id_of_nontrivial_seminorm, norm_pi_le_of_le, norm_restrictScalars, opNorm_add_le, opNorm_comp_le, opNorm_eq_of_bounds, opNorm_le_bound, opNorm_le_bound', opNorm_le_iff, opNorm_le_iff_lipschitz, opNorm_le_of_ball, opNorm_le_of_lipschitz, opNorm_le_of_nhds_zero, opNorm_le_of_shell, opNorm_le_of_shell', opNorm_le_of_unit_norm, opNorm_neg, opNorm_nonneg, opNorm_smul_le, opNorm_subsingleton, opNorm_zero, ratio_le_opNorm, restrictScalarsIsometry_toLinearMap, unit_le_opNorm, coe_toSpanSingleton, norm_toContinuousLinearMap_le, toSpanSingleton_apply, mkContinuous_norm_le, mkContinuous_norm_le', bound_of_continuous, bound_of_shell_semi_normed, ebound_of_continuous, nnbound_of_continuous, norm_subtypeL_le, ball_subset_range_iff_surjective, ball_zero_subset_range_iff_surjective, closedBall_subset_range_iff_surjective, norm_image_of_norm_eq_zero, norm_image_of_norm_zero, sphere_subset_range_iff_surjective
59
Total69

ContinuousLinearMap

Definitions

NameCategoryTheorems
hasOpNorm šŸ“–CompOp
243 mathmath: Matrix.l2_opNorm_toEuclideanCLM, MeasureTheory.L1.SimpleFunc.norm_Integral_le_one, LinearMap.mkContinuousā‚‚_norm_le', HasCompactSupport.convolution_integrand_bound_left, opNorm_prod, norm_inr_le_one, opNorm_le_of_unit_norm, opNorm_bound_of_ball_bound, sSup_unit_ball_eq_norm, norm_jacobiThetaā‚‚_term_fderiv_ge, norm_inl_le_one, opNorm_le_bound', isBigOWith_sub, norm_iteratedFDerivWithin_one, MeasureTheory.L1.norm_setToL1_le, RCLike.conjCLE_norm, opNorm_ext, norm_compLp_le, ContinuousLinearEquiv.subsingleton_or_norm_symm_pos, norm_compContinuousMultilinearMap_le, opNorm_comp_linearIsometryEquiv, Complex.ofRealCLM_norm, opNorm_lsmul_apply_le, Module.Basis.exists_opNorm_le, isBigOWith_id, MeasureTheory.L1.norm_setToL1_le_norm_setToL1SCLM, HasFDerivAt.le_of_lipschitzOn, opNorm_mul_flip_apply, norm_extendToš•œ, Real.integrable_prod_sub, MeasureTheory.convolution_integrand_bound_right_of_le_of_subset, ContinuousMap.toLp_norm_le, ContinuousMultilinearMap.norm_smulRightL_le, RCLike.reCLM_norm, opNorm_mul, norm_fst_le, DoubleCentralizer.norm_fst_eq_snd, le_opNorm, DoubleCentralizer.norm_def', adjointAux_norm, ContinuousAffineMap.norm_def, norm_iteratedFDerivWithin_comp_left, DoubleCentralizer.norm_def, FDerivMeasurableAux.norm_sub_le_of_mem_A, ContinuousLinearEquiv.one_le_norm_mul_norm_symm, eventually_norm_mfderivWithin_symm_extChartAt_lt, LinearIsometry.norm_toContinuousLinearMap, norm_toSpanSingleton, VectorFourier.norm_iteratedFDeriv_fourierPowSMulRight, opNorm_le_of_shell', NormedSpace.inclusionInDoubleDual_norm_eq, opNorm_mul_apply, norm_smulRightL, ContinuousMultilinearMap.curryLeft_norm, ContinuousAlternatingMap.norm_curryLeft, NormedSpace.inclusionInDoubleDual_norm_le, LinearMap.norm_mkContinuousā‚‚_aux, ContinuousAffineMap.norm_eq, ContinuousAlternatingMap.norm_alternatizeUncurryFinCLM_le, ratio_le_opNorm, norm_fderiv_le_of_lipschitz, Complex.imCLM_norm, ContinuousAffineMap.norm_contLinear_le, ContinuousAlternatingMap.norm_ofSubsingleton, norm_smulRight_apply, UniformSpace.Completion.norm_toComplL, PiTensorProduct.liftEquiv_symm_apply, Submodule.norm_subtypeL, norm_iteratedFDeriv_le_of_bilinear, opNorm_le_of_ball, norm_precompR_le, opNorm_le_bound, MultilinearMap.mkContinuousLinear_norm_le, MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm, FormalMultilinearSeries.norm_compContinuousLinearMap_le, DoubleCentralizer.norm_snd, opNorm_comp_le, Submodule.starProjection_norm_le, MeasureTheory.norm_weightedSMul_le, norm_fderiv_norm_rpow_le, Unitization.norm_eq_sup, ContinuousMap.toLp_norm_eq_toLp_norm_coe, Submodule.norm_starProjection, exists_dual_vector, banach_steinhaus, rayleighQuotient_le_norm, norm_def, le_opNorm_of_le, NormedSpace.equicontinuous_TFAE, opNorm_add_le, sSup_sphere_eq_norm, norm_inr, opNorm_extend_le, opNorm_mulLeftRight_apply_le, norm_map_tail_le, exists_dual_vector'', norm_fderiv_iteratedFDeriv, MeasureTheory.Lp.norm_constL_le, LinearIsometry.norm_toContinuousLinearMap_comp, isBigOWith_comp, eventually_norm_symmL_trivializationAt_self_comp_lt, MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le', ContinuousLinearEquiv.norm_symm_pos, MultilinearMap.mkContinuousLinear_norm_le', norm_fderivWithin_iteratedFDerivWithin, norm_extendToš•œ'_bound, norm_derivWithin_eq_norm_fderivWithin, VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le, le_opNormā‚‚, norm_iteratedFDeriv_comp_left, norm_uncurryMid, opNorm_mul_le, uncurryLeft_norm, opNorm_subsingleton, ProbabilityTheory.norm_uncenteredCovarianceBilinDual_le, MeasureTheory.dist_convolution_le', LinearMap.opNorm_extendOfNorm_le, InnerProductSpace.innerSL_norm, Unitization.norm_def, eventually_norm_symmL_trivializationAt_comp_self_lt, norm_single, norm_extendToš•œ', coord_norm', norm_fderiv_norm, LinearMap.mkContinuousā‚‚_norm_le, StrongDual.norm_toLpā‚—_le, RCLike.ofRealCLM_norm, opNorm_zero, LinearMap.mkContinuous_norm_le', exists_dual_vector', HasFDerivAt.le_of_lip', eventually_norm_symmL_trivializationAt_lt, opNorm_le_iff, opNorm_zero_iff, norm_iteratedFDerivWithin_le_of_bilinear, norm_compContinuousAlternatingMap_le, norm_id_le, HasFDerivAt.le_of_lipschitz, LinearMap.mkContinuous_norm_le, opNorm_mulLeftRight_apply_apply_le, opNorm_lsmul_le, WeakDual.CharacterSpace.norm_le_norm_one, Matrix.linfty_opNorm_toMatrix, innerSL_apply_norm, norm_compL_le, norm_fst, PiTensorProduct.mapL_opNorm, MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le, PiTensorProduct.toDualContinuousMultilinearMap_le_projectiveSeminorm, norm_restrictScalars, opNorm_mul_apply_le, opNorm_smul_le, MeasureTheory.L1.norm_setToL1_le', norm_iteratedFDeriv_one, norm_bilinearRestrictScalars, norm_inl, norm_deriv_eq_norm_fderiv, DoubleCentralizer.norm_fst, BoundedContinuousFunction.toLp_norm_le, ContDiffMapSupportedIn.seminorm_postcompLM_le, Matrix.linfty_opNorm_eq_opNorm, norm_fderiv_le_of_lipschitzOn, opNorm_le_iff_lipschitz, opNorm_le_of_nhds_zero, opNorm_flip, AlgHom.toContinuousLinearMap_norm, opNorm_le_of_shell, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, AlternatingMap.mkContinuousLinear_norm_le, norm_single_le_one, norm_compSL_le, MeasureTheory.norm_condExpInd_le, opNorm_nonneg, normOneClass, opNorm_neg, ContinuousAlternatingMap.norm_alternatizeUncurryFin_le, Complex.norm_fderiv_le_one_of_mapsTo_ball, Complex.conjCLE_norm, unit_le_opNorm, exists_extension_norm_eq, norm_id, MeasureTheory.L1.norm_Integral_le_one, norm_smulRightL_le, VectorFourier.norm_fourierSMulRight_le, Unitization.norm_splitMul_snd_sq, ContinuousMultilinearMap.norm_ofSubsingleton, VectorFourier.norm_fourierPowSMulRight_le, ProbabilityTheory.norm_uncenteredCovarianceBilin_le, VectorFourier.norm_fourierSMulRight, ContinuousLinearEquiv.coord_norm', LinearIsometry.norm_toContinuousLinearMap_le, FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos_aux2, Complex.reCLM_norm, norm_snd_le, opNorm_mulLeftRight_le, norm_compLpL_le, sSup_unitClosedBall_eq_norm, ContinuousLinearEquiv.coord_norm, opNorm_eq_of_bounds, norm_adjoint_comp_self, Submodule.norm_orthogonalProjection, opNorm_lsmul, norm_id_of_nontrivial_seminorm, NormedSpace.double_dual_bound, Matrix.cstar_norm_def, Module.Basis.opNorm_le, norm_snd, norm_fderiv_le_of_lip', norm_holderL_le, ContinuousAlternatingMap.norm_compContinuousLinearMap_le, eventually_norm_trivializationAt_lt, Matrix.l2_opNorm_def, ContinuousMultilinearMap.norm_compContinuousLinearMapL_le, Complex.norm_fderiv_le_div_of_mapsTo_ball, norm_innerSL_le, isLeast_opNorm, Real.exists_extension_norm_eq, AlternatingMap.mkContinuousLinear_norm_le_max, dist_le_opNorm, norm_fderiv_norm_id_rpow, norm_holder_apply_apply_le, homothety_norm, Submodule.norm_subtypeL_le, ContinuousMultilinearMap.norm_compContinuousLinearMap_le, eventually_norm_mfderiv_extChartAt_lt, VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le, norm_precompL_le, norm_map_removeNth_le, Submodule.orthogonalProjection_norm_le, MeasureTheory.norm_condExpL2_le_one, HasCompactSupport.convolution_integrand_bound_right, HasCompactSupport.convolution_integrand_bound_right_of_subset, norm_smulRightL_apply, opNorm_le_boundā‚‚, ContinuousMultilinearMap.norm_curryMid, opNorm_le_of_lipschitz, toSesqForm_apply_norm_le, CStarMatrix.norm_def, OrderedFinpartition.norm_compAlongOrderedFinpartitionL_le, InnerProductSpace.norm_rankOne, norm_jacobiThetaā‚‚_term_fderiv_le, ContinuousLinearEquiv.norm_pos, norm_iteratedFDerivWithin_le_of_bilinear_aux
opNorm šŸ“–CompOp—
restrictScalarsIsometry šŸ“–CompOp
2 mathmath: coe_restrictScalarsIsometry, restrictScalarsIsometry_toLinearMap
seminorm šŸ“–CompOp—
toNormedAlgebra šŸ“–CompOp—
toNormedSpace šŸ“–CompOp
209 mathmath: ContMDiffAt.coordChangeL, MDifferentiable.coordChangeL, LinearMap.mkContinuousā‚‚_norm_le', SchwartzMap.lineDerivOpCLM_eq, Bundle.ContMDiffRiemannianMetric.contMDiff, HasCompactSupport.convolution_integrand_bound_left, Real.fderiv_fourierIntegral, ContDiff.fderiv_succ, ContinuousMultilinearMap.analyticAt_uncurry_compContinuousLinearMap, hasFTaylorSeriesUpToOn_top_iff_right, hasFDerivAt_integral_of_dominated_loc_of_lip_interval, integral_apply, SchwartzMap.integral_clm_comp_lineDerivOp_right_eq_neg_left, Real.fourier_continuousLinearMap_apply, ContDiffAt.fderiv_right_succ, iteratedFDerivWithin_succ_eq_comp_right, ContMDiffWithinAt.mfderivWithin_const, FormalMultilinearSeries.derivSeries_coeff_one, mdifferentiableOn_symm_coordChangeL, fderiv_clm_comp, ContinuousMultilinearMap.norm_compContinuousLinearMapLRight_le, Bundle.ContinuousLinearMap.vectorBundle, SchwartzMap.fderivCLM_apply, Real.integrable_prod_sub, ContDiffAt.fderiv_succ, MeasureTheory.convolution_integrand_bound_right_of_le_of_subset, ContinuousMultilinearMap.norm_smulRightL_le, VectorBundleCore.contMDiffOn_coordChange, HasFPowerSeriesWithinOnBall.fderivWithin, opNorm_mul, Real.fderiv_fourier, MeasureTheory.L1.setToL1_smul_left, intervalIntegral.hasFDerivAt_integral_of_dominated_loc_of_lip, VectorFourier.fourierIntegral_continuousLinearMap_apply, contDiff_succ_iff_fderiv, ContinuousMultilinearMap.curryRight_norm, ContDiffWithinAt.hasFDerivWithinAt_nhds, VectorFourier.hasFDerivAt_fourierIntegral, MeasureTheory.convolution_precompR_apply, Bundle.ContinuousRiemannianMetric.continuous, VectorFourier.norm_iteratedFDeriv_fourierPowSMulRight, NormedSpace.inclusionInDoubleDual_norm_eq, iteratedFDerivWithin_succ_apply_right, contDiffAt_map_inverse, Real.fourierIntegral_continuousLinearMap_apply, AnalyticOn.fderivWithin, norm_smulRightL, ContDiffAt.fderiv_right, ContMDiffVectorBundle.continuousLinearMap, ContDiffOn.fderiv_of_isOpen, inCoordinates_apply_eqā‚‚, AnalyticOnNhd.fderiv_of_isOpen, contDiffOn_infty_iff_fderivWithin, Real.hasFDerivAt_fourier, HasFPowerSeriesOnBall.fderiv, ContMDiffOn.coordChangeL, mdifferentiableAt_hom_bundle, NormedSpace.inclusionInDoubleDual_norm_le, ContinuousAlternatingMap.norm_alternatizeUncurryFinCLM_le, MeasureTheory.hasFDerivAt_convolution_right_with_param, ContMDiffAt.mfderiv_const, HasCompactSupport.hasFDerivAt_convolution_right, MDifferentiableOn.coordChangeL, continuousMultilinearCurryRightEquiv_symm_apply, IsContMDiffRiemannianBundle.exists_contMDiff, ContDiffWithinAt.fderivWithin'', contMDiffAt_coordChangeL, hasFDerivAt_integral_of_dominated_loc_of_lip', MDifferentiableWithinAt.coordChangeL, coe_flipā‚—įµ¢', contDiffOn_succ_iff_fderiv_of_isOpen, hasFTaylorSeriesUpToOn_succ_iff_right, ContinuousMultilinearMap.norm_map_init_le, SchwartzMap.smulRightCLM_apply_apply, MeasureTheory.setToFun_smul_left, norm_iteratedFDeriv_le_of_bilinear, norm_precompR_le, nnnorm_holder_apply_apply_le, IsContinuousRiemannianBundle.exists_continuous, contMDiffOn_continuousLinearMapCoordChange, Real.fourier_fderiv, hasFTaylorSeriesUpTo_succ_nat_iff_right, VectorFourier.fderiv_fourierIntegral, hasFTaylorSeriesUpToOn_succ_nat_iff_right, Bundle.ContinuousLinearMap.vectorPrebundle.isContMDiff, contDiffWithinAt_succ_iff_hasFDerivWithinAt', contDiffOn_succ_iff_hasFDerivWithinAt, FormalMultilinearSeries.radius_unshift, PiTensorProduct.dualSeminorms_bounded, opNorm_mulLeftRight_apply_le, SchwartzMap.fourier_evalCLM_eq, contDiffOn_infty_iff_fderiv_of_isOpen, SchwartzMap.evalCLM_apply_apply, contMDiffOn_symm_coordChangeL, contMDiffAt_hom_bundle, PiTensorProduct.injectiveSeminorm_apply, HasFTaylorSeriesUpToOn.shift_of_succ, contDiffOn_fderiv_coord_change, VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le, MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left, le_opNormā‚‚, opNorm_mul_le, ContDiffWithinAt.fderivWithin', contDiffAt_succ_iff_hasFDerivAt, MeasureTheory.dist_convolution_le', InnerProductSpace.innerSL_norm, ContMDiffWithinAt.mfderivWithin, iteratedFDeriv_succ_apply_right, mdifferentiableOn_continuousLinearMapCoordChange, contDiff_clm_apply_iff, LinearMap.mkContinuousā‚‚_norm_le, contDiffOn_clm_apply, HasFDerivWithinAt.clm_comp, IsInvertible.contDiffAt_map_inverse, HasFPowerSeriesWithinOnBall.fderivWithin_of_mem, intervalIntegral.hasFDerivAt_integral_of_dominated_of_fderiv_le, Real.fourierIntegral_fderiv, SchwartzMap.tsupport_fderivCLM_subset, intervalIntegral_apply, AnalyticOnNhd.fderiv, opNNNorm_mul, norm_iteratedFDerivWithin_le_of_bilinear, iteratedFDeriv_succ_eq_comp_right, ContDiffOn.fderivWithin, Real.hasFDerivAt_fourierIntegral, FormalMultilinearSeries.radius_shift, mdifferentiableOn_coordChangeL, opNorm_lsmul_le, norm_compL_le, ContMDiffVectorBundle.contMDiffOn_coordChangeL, fderivWithin_clm_comp, VectorBundleCore.IsContMDiff.contMDiffOn_coordChange, MDifferentiableAt.coordChangeL, norm_bilinearRestrictScalars, SchwartzMap.fderivCLM_fourier_eq, ContDiffAt.fderiv, SchwartzMap.integral_clm_comp_deriv_right_eq_neg_left, contDiffOn_succ_iff_fderivWithin, continuousMultilinearCurryRightEquiv_symm_apply', ContDiffWithinAt.fderivWithin, ContinuousMultilinearMap.cpolynomialOn_uncurry_compContinuousLinearMap, ContinuousMultilinearMap.analyticWithinAt_uncurry_compContinuousLinearMap, ContDiffPointwiseHolderAt.fderiv, Real.fourierIntegral_continuousLinearMap_apply', hasFDerivAt_integral_of_dominated_of_fderiv_le, CPolynomialOn.fderiv, opNorm_flip, ContMDiffWithinAt.coordChangeL, FormalMultilinearSeries.radius_le_radius_derivSeries, norm_compSL_le, coe_flipā‚—įµ¢, contDiffOn_succ_iff_hasFDerivWithinAt_of_uniqueDiffOn, ContMDiffAt.mfderiv, VectorPrebundle.contMDiffOn_contMDiffCoordChange, mdifferentiableAt_coordChangeL, hasFDerivAt_integral_of_dominated_of_fderiv_le'', norm_smulRightL_le, VectorFourier.norm_fourierSMulRight_le, HasFiniteFPowerSeriesOnBall.fderiv', continuousMultilinearCurryRightEquiv_apply', flipā‚—įµ¢'_symm, VectorFourier.norm_fourierPowSMulRight_le, SchwartzMap.fourier_fderivCLM_eq, ContinuousMultilinearMap.analyticOnNhd_uncurry_compContinuousLinearMap, VectorPrebundle.IsContMDiff.exists_contMDiffCoordChange, contMDiffOn_coordChangeL, opNorm_mulLeftRight_le, norm_iteratedFDerivWithin_fderivWithin, ContinuousMultilinearMap.cpolynomialAt_uncurry_compContinuousLinearMap, AnalyticAt.fderiv, opNorm_lsmul, NormedSpace.double_dual_bound, ContDiff.fderiv_right, norm_holderL_le, contDiff_infty_iff_fderiv, HasFPowerSeriesWithinOnBall.fderivWithin_of_mem_of_analyticOn, exists_continuousLinearEquiv_fderiv_symm_eq, SchwartzMap.integral_clm_comp_laplacian_right_eq_left, norm_innerSL_le, continuousMultilinearCurryRightEquiv_apply, ContDiff.fderiv, flipā‚—įµ¢_symm, exists_continuousLinearEquiv_fderivWithin_symm_eq, norm_holder_apply_apply_le, HasStrictFDerivAt.clm_comp, ContinuousMultilinearMap.analyticOn_uncurry_compContinuousLinearMap, VectorFourier.fourierIntegral_fderiv, smulRightL_apply_apply, mdifferentiableWithinAt_hom_bundle, VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le, norm_precompL_le, PiTensorProduct.mapLMultilinear_opNorm, HasCompactSupport.convolution_integrand_bound_right, HasFDerivAt.clm_comp, HasCompactSupport.convolution_integrand_bound_right_of_subset, contMDiffWithinAt_hom_bundle, mem_contMDiffFiberwiseLinear_iff, opNorm_le_boundā‚‚, norm_iteratedFDeriv_fderiv, PiTensorProduct.injectiveSeminorm_def, contDiff_succ_iff_hasFDerivAt, HasCompactSupport.hasFDerivAt_convolution_left, ContMDiff.coordChangeL, ContDiffWithinAt.fderivWithin_right, contDiffWithinAt_succ_iff_hasFDerivWithinAt, hasFDerivAt_integral_of_dominated_loc_of_lip, HasFiniteFPowerSeriesOnBall.fderiv, ContinuousMultilinearMap.uncurryRight_norm, norm_iteratedFDerivWithin_le_of_bilinear_aux
toPseudoMetricSpace šŸ“–CompOp
15 mathmath: NormedSpace.isBounded_polar_of_mem_nhds_zero, dist_iteratedFDerivWithin_one, isCompact_image_coe_closedBall, RegularNormedAlgebra.isometry_mul', isClosed_image_coe_closedBall, WeakDual.isCompact_closedBall, NormedSpace.polar_ball_subset_closedBall_div, lipschitz_apply, WeakDual.isSeqCompact_closedBall, WeakDual.isClosed_closedBall, isometry_mul, NormedSpace.polar_ball, NormedSpace.sInter_polar_eq_closedBall, NormedSpace.closedBall_inv_subset_polar_closedBall, NormedSpace.polar_closedBall
toSeminormedAddCommGroup šŸ“–CompOp
357 mathmath: ContinuousLinearEquiv.antilipschitz, LinearMap.IsSymmetric.clm_adjoint_eq, fderiv_iteratedFDeriv, LinearMap.mkContinuousā‚‚_norm_le', isPositive_iff_eq_sum_rankOne, Bundle.ContMDiffRiemannianMetric.contMDiff, InnerProductSpace.isPositive_rankOne_self, mulLeftRight_isBoundedBilinear, MDifferentiableOn.clm_postcomp, HasCompactSupport.convolution_integrand_bound_left, compSL_apply, InnerProductSpace.toLinearIsometry_toDual, hasFDerivAt_iff_hasGradientAt, LinearIsometry.nnnorm_toContinuousLinearMap, InnerProductSpace.rankOne_one_left_eq_innerSL, MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv, ContinuousMultilinearMap.analyticAt_uncurry_compContinuousLinearMap, MDifferentiableAt.cle_arrowCongr, sSup_unitClosedBall_eq_nnnorm, hasFTaylorSeriesUpToOn_top_iff_right, InnerProductSpace.isIdempotentElem_rankOne_self, Matrix.cstar_nnnorm_def, ApproximatesLinearOn.lipschitz, banach_steinhaus_iSup_nnnorm, ContinuousMultilinearMap.changeOrigin_toFormalMultilinearSeries, iteratedFDerivWithin_succ_eq_comp_right, eventually_enorm_mfderivWithin_symm_extChartAt_lt, HasFTaylorSeriesUpTo.hasFDerivAt, norm_iteratedFDerivWithin_clm_apply, ContMDiffOn.clm_postcomp, DoubleCentralizer.nnnorm_def', LinearMap.adjoint_eq_toCLM_adjoint, nnnorm_def, OrthonormalBasis.orthogonalProjection_eq_sum_rankOne, fderiv_clm_comp, InnerProductSpace.toDual_symm_apply, ContinuousMultilinearMap.norm_compContinuousLinearMapLRight_le, MeasureTheory.charFun_toDual_symm_eq_charFunDual, opNNNorm_le_iff, HasFPowerSeriesWithinAt.hasStrictFDerivWithinAt, adjoint_id, iteratedFDerivWithin_succ_eq_comp_left, isStarNormal_iff_norm_eq_adjoint, InnerProductSpace.inner_left_rankOne_apply, norm_iteratedFDeriv_clm_apply, ContMDiffAt.clm_postcomp, ContMDiffWithinAt.clm_postcomp, Real.integrable_prod_sub, eq_adjoint_iff, InnerProductSpace.rankOne_apply, MeasureTheory.convolution_integrand_bound_right_of_le_of_subset, ContinuousMultilinearMap.norm_smulRightL_le, precompL_apply, DoubleCentralizer.nnnorm_snd, IsSelfAdjoint.adjoint_eq, MDifferentiable.clm_postcomp, enorm_fderiv_norm_rpow_le, isPositive_self_comp_adjoint, LinearMap.adjoint_toContinuousLinearMap, toSesqForm_apply_coe, LinearIsometryEquiv.adjoint_eq_symm, sSup_sphere_eq_nnnorm, hasFDerivWithinAt_of_bilinear, opNorm_mul, MDifferentiable.cle_arrowCongr, MeasureTheory.dominatedFinMeasAdditive_condExpInd, Complex.reCLM_nnnorm, Unitization.nnnorm_def, ApproximatesLinearOn.norm_fderiv_sub_le, hasStrictFDerivAt_of_bilinear, norm_iteratedFDerivWithin_clm_apply_const, isBoundedBilinearMap_comp, ContinuousAlternatingMap.ofSubsingletonLIE_symm_apply, InnerProductSpace.toDualMap_apply_apply, opNNNorm_prod, ContinuousMultilinearMap.curryRight_norm, MDifferentiableAt.clm_postcomp, Matrix.linfty_opNNNorm_eq_opNNNorm, InnerProductSpace.nnnorm_rankOne, InnerProductSpace.isSymmetricProjection_rankOne_self, HasFTaylorSeriesUpToOn.eventually_hasFDerivAt, hasGradientWithinAt_iff_hasFDerivWithinAt, DoubleCentralizer.nnnorm_def, apply_norm_sq_eq_inner_adjoint_left, VectorFourier.norm_iteratedFDeriv_fourierPowSMulRight, HasFPowerSeriesOnBall.fderiv_eq, NormedSpace.inclusionInDoubleDual_norm_eq, fderiv_of_bilinear, nnnorm_toSpanSingleton, HasFTaylorSeriesUpToOn.hasFDerivWithinAt, Submodule.adjoint_subtypeL, norm_smulRightL, InnerProductSpace.trace_rankOne, MDifferentiableWithinAt.cle_arrowCongr, MDifferentiableWithinAt.clm_precomp, isBoundedBilinearMap_compMultilinear, compL_apply, HasFPowerSeriesWithinAt.fderivWithin_eq, Matrix.linfty_opNNNorm_toMatrix, IsPositive.conj_adjoint, ContMDiffOn.clm_precomp, InnerProductSpace.adjoint_rankOne, InnerProductSpace.rankOne_eq_zero, lipschitz, InnerProductSpace.inner_right_rankOne_apply, HasFDerivWithinAt.hasGradientWithinAt, fderivWithin_of_bilinear, HasFPowerSeriesOnBall.compContinuousLinearMap, PiTensorProduct.liftIsometry_tprodL, NormedSpace.inclusionInDoubleDual_norm_le, InnerProductSpace.rankOne_eq_rankOne_iff_comm, InnerProductSpace.toDual_apply, precompR_apply, ContinuousAlternatingMap.norm_alternatizeUncurryFinCLM_le, InnerProductSpace.comp_rankOne, OrthonormalBasis.starProjection_eq_sum_rankOne, InnerProductSpace.toDualMap_apply, adjoint_inner_left, FormalMultilinearSeries.nnnorm_compContinuousLinearMap_le, apply_norm_eq_sqrt_inner_adjoint_right, ContinuousMultilinearMap.ofSubsingletonā‚—įµ¢_symm_apply, ContinuousAlternatingMap.ofSubsingletonLIE_apply, continuousMultilinearCurryRightEquiv_symm_apply, opNNNorm_le_bound, IsContMDiffRiemannianBundle.exists_contMDiff, Complex.ofRealCLM_nnnorm, InnerProductSpace.rank_rankOne, ContMDiffOn.cle_arrowCongr, MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_eq_inner, InnerProductSpace.toDual_apply_apply, adjointAux_apply, inner_map_map_iff_adjoint_comp_self, hasFDerivAt_integral_of_dominated_loc_of_lip', InnerProductSpace.rankOne_def, coe_flipā‚—įµ¢', IsStarNormal.ker_adjoint_eq_ker, hasFTaylorSeriesUpToOn_succ_iff_right, coe_flipMultilinearEquiv, ContinuousMultilinearMap.norm_map_init_le, norm_iteratedFDeriv_le_of_bilinear, IsStarNormal.adjoint_apply_eq_zero_iff, norm_precompR_le, isBoundedLinearMap_comp_right, fderivWithin_iteratedFDerivWithin, nnnorm_holder_apply_apply_le, IsBoundedBilinearMap.isBoundedLinearMap_deriv, DoubleCentralizer.nnnorm_fst, contMDiffOn_continuousLinearMapCoordChange, InnerProductSpace.enorm_rankOne, Module.Basis.exists_opNNNorm_le, HasGradientAt.hasFDerivAt, isLeast_opNNNorm, MeasureTheory.eLpNorm_le_eLpNorm_fderiv_one, hasFTaylorSeriesUpTo_succ_nat_iff_right, hasFTaylorSeriesUpToOn_succ_nat_iff_right, toPMap_adjoint_eq_adjoint_toPMap_of_dense, ProbabilityTheory.covarianceBilin_eq_covarianceBilinDual, ContinuousLinearEquiv.lipschitz, opNNNorm_le_bound', NormedSpace.equicontinuous_TFAE, HasFPowerSeriesAt.fderiv_eq, coe_restrictScalarsIsometry, PiTensorProduct.dualSeminorms_bounded, opNNNorm_le_of_unit_nnnorm, IsSelfAdjoint.conj_adjoint, ContinuousMultilinearMap.curryMidEquiv_apply, opNorm_mulLeftRight_apply_le, MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_le, InnerProductSpace.nullSubmodule_le_ker_toDualMap_left, PiTensorProduct.injectiveSeminorm_apply, isBoundedLinearMap_comp_left, Matrix.l2_opNNNorm_def, ContMDiffAt.clm_precomp, HasFTaylorSeriesUpToOn.hasFDerivAt, flip_add, isSelfAdjoint_iff', MeasureTheory.L1.nnnorm_Integral_le_one, HasFTaylorSeriesUpToOn.shift_of_succ, ContinuousLinearEquiv.subsingleton_or_nnnorm_symm_pos, VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le, le_opNormā‚‚, InnerProductSpace.rankOne_def', opNorm_mul_le, apply_norm_eq_sqrt_inner_adjoint_left, Complex.conjCLE_nnorm, MeasureTheory.dist_convolution_le', MDifferentiableOn.cle_arrowCongr, InnerProductSpace.innerSL_norm, DoubleCentralizer.nnnorm_fst_eq_snd, sSup_unit_ball_eq_nnnorm, MDifferentiableAt.clm_precomp, opENorm_comp_le, hasGradientAt_iff_hasFDerivAt, FormalMultilinearSeries.leftInv_coeff_one, mdifferentiableOn_continuousLinearMapCoordChange, InnerProductSpace.isStarProjection_rankOne_self, HasFPowerSeriesAt.hasFDerivAt, eventually_enorm_mfderiv_extChartAt_lt, HasFPowerSeriesWithinOnBall.compContinuousLinearMap, LinearMap.mkContinuousā‚‚_norm_le, le_opNNNorm, HasFDerivWithinAt.clm_comp, isBoundedBilinearMap_apply, InnerProductSpace.rankOne_comp_rankOne, InnerProductSpace.rankOne_comp, InnerProductSpace.toMatrix_rankOne, PiTensorProduct.liftIsometry_comp_mapL, InnerProductSpace.isSymmetric_rankOne_self, continuousMultilinearCurryLeftEquiv_apply, restrictScalarsIsometry_toLinearMap, WStarAlgebra.exists_predual, PiTensorProduct.liftIsometry_symm_apply, opNNNorm_mul, Complex.conjCLE_enorm, norm_iteratedFDerivWithin_le_of_bilinear, iteratedFDeriv_succ_eq_comp_right, nnnorm_fderiv_norm_rpow_le, HasStrictFDerivAt.approximates_deriv_on_open_nhds, adjoint_toSpanSingleton, ContinuousMultilinearMap.nnnorm_ofSubsingleton, LinearIsometry.enorm_toContinuousLinearMap, HasFPowerSeriesWithinOnBall.fderivWithin_eq, InnerProductSpace.rankOne_one_right_eq_toSpanSingleton, HasFTaylorSeriesUpToOn.hasStrictFDerivAt, FormalMultilinearSeries.div_le_radius_compContinuousLinearMap, InnerProductSpace.toContinuousLinearMap_toDualMap, nndist_le_opNNNorm, opNorm_lsmul_le, InnerProductSpace.toDual_apply_eq_toDualMap_apply, norm_compL_le, fderivWithin_clm_comp, opNNNorm_mul_flip_apply, HasFPowerSeriesOnBall.hasFDerivAt, MeasureTheory.charFun_eq_charFunDual_toDualMap, opNNNorm_comp_le, ContMDiff.clm_postcomp, MDifferentiableWithinAt.clm_postcomp, orthogonal_range, norm_bilinearRestrictScalars, PiTensorProduct.liftIsometry_apply_apply, ProbabilityTheory.covarianceBilin_map, Unitization.nnnorm_eq_sup, MeasureTheory.lintegral_pow_le_pow_lintegral_fderiv_aux, nnnorm_smulRight_apply, MDifferentiableOn.clm_precomp, adjoint_comp, InnerProductSpace.toLinearMap_rankOne, continuousMultilinearCurryRightEquiv_symm_apply', MeasureTheory.eLpNorm_le_eLpNorm_fderiv_of_eq, opNNNorm_eq_of_bounds, ContinuousMultilinearMap.cpolynomialOn_uncurry_compContinuousLinearMap, ContinuousMultilinearMap.analyticWithinAt_uncurry_compContinuousLinearMap, Submodule.adjoint_orthogonalProjection, hasFDerivWithinAt_iff_hasGradientWithinAt, hasFDerivAt_of_bilinear, opNNNorm_le_of_lipschitz, opNorm_flip, FormalMultilinearSeries.radius_compContinuousLinearMap_le, IsPositive.adjoint_conj, star_eq_adjoint, Complex.imCLM_nnnorm, ProperCone.hyperplane_separation_of_notMem, ContinuousAlternatingMap.curryLeftLI_apply, norm_compSL_le, InnerProductSpace.isIdempotentElem_rankOne_self_iff, coe_flipā‚—įµ¢, opNNNorm_subsingleton, IsSelfAdjoint.adjoint_conj, OrthonormalBasis.sum_rankOne_eq_id, adjoint_inner_right, HasFiniteFPowerSeriesOnBall.hasStrictFDerivAt, norm_smulRightL_le, Complex.imCLM_enorm, coe_symm_flipMultilinearEquiv, VectorFourier.norm_fourierSMulRight_le, ContinuousAlternatingMap.nnnorm_ofSubsingleton, Complex.ofRealCLM_enorm, continuousMultilinearCurryRightEquiv_apply', flipā‚—įµ¢'_symm, HasFiniteFPowerSeriesOnBall.hasFDerivAt, HasFDerivAt.hasGradientAt, isAdjointPair_inner, VectorFourier.norm_fourierPowSMulRight_le, nnnorm_id, ContinuousMultilinearMap.analyticOnNhd_uncurry_compContinuousLinearMap, MDifferentiable.clm_precomp, ContinuousLinearEquiv.nnnorm_symm_pos, FormalMultilinearSeries.enorm_compContinuousLinearMap_le, continuousMultilinearCurryLeftEquiv_symm_apply, iteratedFDeriv_succ_eq_comp_left, opNorm_mulLeftRight_le, Module.Basis.opNNNorm_le, ContMDiffWithinAt.clm_precomp, ContinuousMultilinearMap.ofSubsingletonā‚—įµ¢_apply, norm_iteratedFDerivWithin_fderivWithin, le_opENorm, continuousMultilinearCurryFin1_symm_apply, norm_map_iff_adjoint_comp_self, ContinuousMultilinearMap.cpolynomialAt_uncurry_compContinuousLinearMap, norm_adjoint_comp_self, ContMDiff.clm_precomp, opNorm_lsmul, NormedSpace.double_dual_bound, norm_holderL_le, ContinuousAffineMap.toConstProdContinuousLinearMap_fst, HasFiniteFPowerSeriesOnBall.fderiv_eq, HasFPowerSeriesAt.hasStrictFDerivAt, apply_norm_sq_eq_inner_adjoint_right, MeasureTheory.eLpNorm_le_eLpNorm_fderiv, MeasureTheory.dominatedFinMeasAdditive_weightedSMul, isPositive_adjoint_comp_self, Complex.reCLM_enorm, norm_innerSL_le, ContMDiffWithinAt.cle_arrowCongr, continuousMultilinearCurryRightEquiv_apply, HasFPowerSeriesWithinAt.hasFDerivWithinAt, flipā‚—įµ¢_symm, HasGradientWithinAt.hasFDerivWithinAt, FormalMultilinearSeries.rightInv_coeff_one, norm_holder_apply_apply_le, HasStrictFDerivAt.clm_comp, ContinuousMultilinearMap.analyticOn_uncurry_compContinuousLinearMap, fpowerSeries_apply_one, smulRightL_apply_apply, opNNNorm_mul_apply, VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le, norm_precompL_le, PiTensorProduct.mapLMultilinear_opNorm, HasCompactSupport.convolution_integrand_bound_right, HasFPowerSeriesWithinOnBall.hasFDerivWithinAt, InnerProductSpace.symm_toEuclideanLin_rankOne, isBoundedBilinearMap_smulRight, ContMDiffAt.cle_arrowCongr, HasFDerivAt.clm_comp, adjoint_innerSL_apply, HasCompactSupport.convolution_integrand_bound_right_of_subset, norm_smulRightL_apply, opNorm_le_boundā‚‚, fpowerSeriesBilinear_apply_one, le_opNorm_enorm, norm_iteratedFDeriv_fderiv, coe_mulā‚—įµ¢, innerSL_apply_comp, toSesqForm_apply_norm_le, PiTensorProduct.injectiveSeminorm_def, ContMDiff.cle_arrowCongr, InnerProductSpace.nullSubmodule_le_ker_toDualMap_right, adjoint_adjoint, orthogonal_ker, InnerProductSpace.norm_rankOne, hasFDerivAt_integral_of_dominated_loc_of_lip, ContinuousAffineMap.toConstProdContinuousLinearMap_snd, ContinuousMultilinearMap.curryMidEquiv_symm_apply, ContinuousMultilinearMap.uncurryRight_norm, norm_iteratedFDerivWithin_le_of_bilinear_aux, continuousMultilinearCurryFin1_apply, norm_iteratedFDeriv_clm_apply_const
toSeminormedRing šŸ“–CompOp
12 mathmath: mulLeftRight_isBoundedBilinear, mulLeftRight_apply, hasFDerivAt_ringInverse, fderiv_inverse, fderivWithin_inv', opNorm_mulLeftRight_apply_le, hasStrictFDerivAt_ringInverse, opNorm_mulLeftRight_apply_apply_le, hasStrictFDerivAt_inv', opNorm_mulLeftRight_le, hasFDerivAt_inv', fderiv_inv'

Theorems

NameKindAssumesProvesValidatesDepends On
bounds_bddBelow šŸ“–mathematical—BddBelow
Real
Real.instLE
setOf
Real.instZero
——
bounds_nonempty šŸ“–mathematical—Real
Set
Set.instMembership
setOf
Real.instLE
Real.instZero
—bound
le_of_lt
coe_restrictScalarsIsometry šŸ“–mathematical—DFunLike.coe
LinearIsometry
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
module
SeminormedAddCommGroup.toIsTopologicalAddGroup
LinearIsometry.instFunLike
restrictScalarsIsometry
restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
SeminormedRing.toRing
NormedAlgebra.toAlgebra
—RingHomIsometric.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
dist_le_opNorm šŸ“–mathematical—Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
Norm.norm
hasOpNorm
—dist_eq_norm
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
le_opNorm
ebound šŸ“–mathematical—NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
ENorm.enorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—SemilinearMapClass.ebound_of_continuous
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
cont
homothety_norm šŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real
Real.instMul
hasOpNorm—exists_norm_ne_zero
lt_of_le_of_ne'
norm_nonneg
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
le_antisymm
opNorm_le_bound
le_of_eq
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
le_opNorm
isLeast_opNorm šŸ“–mathematical—IsLeast
Real
Real.instLE
setOf
Real.instZero
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
—IsClosed.isLeast_csInf
instOrderTopologyReal
Set.setOf_forall
IsClosed.inter
isClosed_Ici
instClosedIciTopology
OrderTopology.to_orderClosedTopology
isClosed_iInter
isClosed_le
continuous_const
continuous_mul_right
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
bounds_nonempty
bounds_bddBelow
le_of_opNorm_le šŸ“–mathematicalReal
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
SeminormedAddCommGroup.toNorm
DFunLike.coe
funLike
Real.instMul
—le_of_opNorm_le_of_le
le_rfl
le_of_opNorm_le_of_le šŸ“–mathematicalReal
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
SeminormedAddCommGroup.toNorm
DFunLike.coe
funLike
Real.instMul
—LE.le.trans
le_opNorm
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
norm_nonneg
opNorm_nonneg
le_opNorm šŸ“–mathematical—Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm
—isLeast_opNorm
le_opNorm_enorm šŸ“–mathematical—ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENorm.enorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
toSeminormedAddCommGroup
—ENNReal.ofReal_mul
norm_nonneg
ENNReal.ofReal_le_ofReal
le_opNorm
le_opNorm_of_le šŸ“–mathematicalReal
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm
—le_of_opNorm_le_of_le
le_rfl
lipschitzWith_of_opNorm_le šŸ“–mathematicalReal
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
NNReal.toReal
LipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
funLike
—opNorm_le_iff_lipschitz
nnbound šŸ“–mathematical—NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Preorder.toLE
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—SemilinearMapClass.nnbound_of_continuous
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
cont
nnnorm_id šŸ“–mathematical—NNNorm.nnnorm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
id
NNReal
instOneNNReal
—NNReal.eq
RingHomIsometric.ids
norm_id
normOneClass šŸ“–mathematical—NormOneClass
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
one
—norm_id
norm_def šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
InfSet.sInf
Real
Real.instInfSet
setOf
Real.instLE
Real.instZero
——
norm_id šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
id
Real
Real.instOne
—le_antisymm
norm_id_le
exists_norm_ne_zero
ratio_le_opNorm
RingHomIsometric.ids
div_self
id_apply
norm_id_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
id
Real.instOne
—opNorm_le_bound
zero_le_one
Real.instZeroLEOneClass
one_mul
norm_id_of_nontrivial_seminorm šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
id
Real
Real.instOne
—norm_id
NontrivialTopology.of_exists_norm_ne_zero
norm_pi_le_of_le šŸ“–mathematicalReal
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
Real.instZero
Pi.topologicalSpace
Pi.addCommMonoid
Pi.module
Pi.seminormedAddCommGroup
Pi.normedSpace
pi
—opNorm_le_bound
pi_norm_le_iff_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
le_of_opNorm_le
RingHomIsometric.ids
norm_restrictScalars šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedAlgebra.toAlgebra
—le_antisymm
LinearMap.IsScalarTower.compatibleSMul
opNorm_le_bound
norm_nonneg
RingHomIsometric.ids
le_opNorm
opNorm_add_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Real.instAdd
—opNorm_le_bound
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
opNorm_nonneg
LE.le.trans_eq
norm_add_le_of_le
le_opNorm
add_mul
Distrib.rightDistribClass
opNorm_comp_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
comp
Real.instMul
—csInf_le
bounds_bddBelow
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
mul_assoc
le_opNorm_of_le
le_opNorm
opNorm_eq_of_bounds šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—le_antisymm
opNorm_le_bound
le_csInf_iff
bounds_bddBelow
opNorm_le_bound šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—csInf_le
bounds_bddBelow
opNorm_le_bound' šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—opNorm_le_bound
ne_or_eq
norm_image_of_norm_eq_zero
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
cont
MulZeroClass.mul_zero
opNorm_le_iff šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
SeminormedAddCommGroup.toNorm
DFunLike.coe
funLike
Real.instMul
—le_of_opNorm_le
opNorm_le_bound
opNorm_le_iff_lipschitz šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
NNReal.toReal
LipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
funLike
—Real.toNNReal_coe
AddMonoidHomClass.lipschitz_of_bound
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
le_of_opNorm_le
opNorm_le_bound
LipschitzWith.norm_le_mul
map_zero
AddMonoidHomClass.toZeroHomClass
opNorm_le_of_ball šŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—NormedField.exists_one_lt_norm
opNorm_le_of_shell
ball_zero_eq
opNorm_le_of_lipschitz šŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real
Real.instLE
Norm.norm
hasOpNorm
NNReal.toReal
—opNorm_le_iff_lipschitz
opNorm_le_of_nhds_zero šŸ“–mathematicalReal
Real.instLE
Real.instZero
Filter.Eventually
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
nhds
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
hasOpNorm—Metric.eventually_nhds_iff_ball
opNorm_le_of_ball
opNorm_le_of_shell šŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Real.instOne
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—opNorm_le_bound'
SemilinearMapClass.bound_of_shell_semi_normed
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass
opNorm_le_of_shell' šŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
Real.instOne
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
Real.instMul
hasOpNorm—opNorm_le_of_ball
norm_zero
MulZeroClass.mul_zero
ball_zero_eq
opNorm_le_of_shell
inv_lt_oneā‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
inv_ne_zero
norm_inv
inv_inv
div_eq_mul_inv
opNorm_le_of_unit_norm šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
hasOpNorm—opNorm_le_bound'
map_invā‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_algebraMap'
NormedDivisionRing.to_normOneClass
norm_norm
inv_mul_cancelā‚€
map_smulₛₗ
RingHomIsometric.norm_map
div_le_iffā‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
LE.le.lt_of_ne'
norm_nonneg
div_eq_inv_mul
opNorm_neg šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
neg
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
—SeminormedAddCommGroup.toIsTopologicalAddGroup
norm_neg
opNorm_nonneg šŸ“–mathematical—Real
Real.instLE
Real.instZero
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
—Real.sInf_nonneg
opNorm_smul_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
instSMul
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
IsBoundedSMul.toUniformContinuousConstSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Real.instMul
SeminormedAddCommGroup.toNorm
—opNorm_le_bound
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
opNorm_nonneg
smul_apply
le_imp_le_of_le_of_le
norm_smul_le
le_refl
mul_assoc
mul_le_mul_of_nonneg_left
le_opNorm
opNorm_subsingleton šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
Real
Real.instZero
—norm_of_subsingleton
Unique.instSubsingleton
opNorm_zero šŸ“–mathematical—Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
hasOpNorm
zero
Real
Real.instZero
—le_antisymm
opNorm_le_bound
le_rfl
norm_zero
MulZeroClass.zero_mul
opNorm_nonneg
ratio_le_opNorm šŸ“–mathematical—Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
hasOpNorm
—div_le_of_le_mulā‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
opNorm_nonneg
le_opNorm
restrictScalarsIsometry_toLinearMap šŸ“–mathematical—LinearIsometry.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
toSeminormedAddCommGroup
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
module
SeminormedAddCommGroup.toIsTopologicalAddGroup
restrictScalarsIsometry
restrictScalarsā‚—
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
SeminormedRing.toRing
NormedAlgebra.toAlgebra
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
—RingHomIsometric.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
unit_le_opNorm šŸ“–mathematicalReal
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instOne
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
funLike
hasOpNorm
—le_opNorm_of_le
mul_one

LinearIsometry

Definitions

NameCategoryTheorems
toSpanSingleton šŸ“–CompOp
5 mathmath: Orthonormal.isHilbertSum, toSpanSingleton_apply, Orthonormal.linearIsometryEquiv_symm_apply_single_one, coe_toSpanSingleton, Orthonormal.orthogonalFamily

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toSpanSingleton šŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
Real
Real.instOne
toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedSpace.toModule
NormedField.toNormedSpace
toSpanSingleton
LinearMap.toSpanSingleton
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
——
norm_toContinuousLinearMap_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.hasOpNorm
toContinuousLinearMap
Real.instOne
—ContinuousLinearMap.opNorm_le_bound
zero_le_one
Real.instZeroLEOneClass
norm_map
one_mul
toSpanSingleton_apply šŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
Real
Real.instOne
DFunLike.coe
LinearIsometry
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedSpace.toModule
NormedField.toNormedSpace
instFunLike
toSpanSingleton
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
——

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
mkContinuous_norm_le šŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instFunLike
Real.instMul
ContinuousLinearMap
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ContinuousLinearMap.hasOpNorm
mkContinuous
—ContinuousLinearMap.opNorm_le_bound
mkContinuous_norm_le' šŸ“–mathematicalReal
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instFunLike
Real.instMul
ContinuousLinearMap
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ContinuousLinearMap.hasOpNorm
mkContinuous
Real.instMax
Real.instZero
—ContinuousLinearMap.opNorm_le_bound
le_max_right
LE.le.trans
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_max_left
norm_nonneg

SemilinearMapClass

Theorems

NameKindAssumesProvesValidatesDepends On
bound_of_continuous šŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Real.instMul
—map_add
toAddHomClass
MulActionSemiHomClass.map_smulₛₗ
toMulActionSemiHomClass
Seminorm.bound_of_continuous_normedSpace
Continuous.comp
continuous_norm
bound_of_shell_semi_normed šŸ“–ā€”Real
Real.instLT
Real.instZero
Real.instOne
Norm.norm
NormedField.toNorm
NontriviallyNormedField.toNormedField
Real.instLE
SeminormedAddCommGroup.toNorm
DFunLike.coe
Real.instMul
——Seminorm.bound_of_shell
map_add
toAddHomClass
MulActionSemiHomClass.map_smulₛₗ
toMulActionSemiHomClass
ebound_of_continuous šŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
ENorm.enorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—nnbound_of_continuous
ENNReal.coe_mono
nnbound_of_continuous šŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Preorder.toLE
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—bound_of_continuous
LT.lt.le

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
norm_subtypeL_le šŸ“–mathematical—Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
Submodule
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
SetLike.instMembership
setLike
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
addCommMonoid
module
ContinuousLinearMap.hasOpNorm
seminormedAddCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
normedSpace
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
subtypeL
Real.instOne
—LinearIsometry.norm_toContinuousLinearMap_le
IsScalarTower.left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
ball_subset_range_iff_surjective šŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
Set.range
DFunLike.coe
—ball_zero_subset_range_iff_surjective
LinearMap.coe_coe
Submodule.add_mem_iff_left
Metric.mem_ball_self
dist_add_self_left
dist_zero_right
ball_zero_subset_range_iff_surjective šŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Set.range
DFunLike.coe
—Absorbent.subset_range_iff_surjective
absorbent_ball
norm_zero
closedBall_subset_range_iff_surjective šŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
Set.range
DFunLike.coe
—ball_subset_range_iff_surjective
subset_trans
Set.instIsTransSubset
Metric.ball_subset_closedBall
norm_image_of_norm_eq_zero šŸ“–ā€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
Norm.norm
SeminormedAddCommGroup.toNorm
Real
Real.instZero
——mem_closure_zero_iff_norm
specializes_iff_mem_closure
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Specializes.map
norm_image_of_norm_zero šŸ“–ā€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
Norm.norm
SeminormedAddCommGroup.toNorm
Real
Real.instZero
——norm_image_of_norm_eq_zero
sphere_subset_range_iff_surjective šŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
Metric.sphere
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.range
DFunLike.coe
—closedBall_subset_range_iff_surjective
convexHull_sphere_eq_closedBall
LT.lt.le
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
convexHull_mono
subset_refl
Set.instReflSubset
convexHull_eq_self
Submodule.Convex.semilinear_range

---

← Back to Index