Theoremslipschitz, exists_lt_apply_of_lt_opNNNorm, exists_lt_apply_of_lt_opNorm, exists_mul_lt_apply_of_lt_opNNNorm, exists_mul_lt_of_lt_opNorm, exists_nnnorm_eq_one_lt_apply_of_lt_opNNNorm, isLeast_opNNNorm, le_opENorm, le_opNNNorm, lipschitz, lipschitz_apply, nndist_le_opNNNorm, nnnorm_def, opENorm_comp_le, opNNNorm_comp_le, opNNNorm_eq_of_bounds, opNNNorm_le_bound, opNNNorm_le_bound', opNNNorm_le_iff, opNNNorm_le_of_lipschitz, opNNNorm_le_of_unit_nnnorm, opNNNorm_subsingleton, sSup_sphere_eq_nnnorm, sSup_sphere_eq_norm, sSup_unitClosedBall_eq_nnnorm, sSup_unitClosedBall_eq_norm, sSup_unit_ball_eq_nnnorm, sSup_unit_ball_eq_norm | 28 |