Documentation Verification Report

Prod

πŸ“ Source: Mathlib/Analysis/Normed/Operator/Prod.lean

Statistics

MetricCount
DefinitionsprodMapL, prodβ‚—α΅’
2
Theoremsprod_mapL, prod_map_equivL, norm_fst, norm_fst_le, norm_snd, norm_snd_le, opNNNorm_prod, opNorm_prod, prodMapL_apply, prod_mapL, prod_map_equivL
11
Total13

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
prod_mapL πŸ“–mathematicalContinuous
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousLinearMap.prodMap
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
comp
Prod.instIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
Prod.continuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Prod.smulCommClass
Prod.continuousConstSMul
ContinuousLinearMap.continuous
prodMk
prod_map_equivL πŸ“–mathematicalContinuous
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousLinearEquiv.prodCongr
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
comp
Prod.instIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
Prod.continuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Prod.smulCommClass
Prod.continuousConstSMul
ContinuousLinearMap.continuous
prodMk

ContinuousLinearMap

Definitions

NameCategoryTheorems
prodMapL πŸ“–CompOp
1 mathmath: prodMapL_apply
prodβ‚—α΅’ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
norm_fst πŸ“–mathematicalβ€”Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Prod.instModule
NormedSpace.toModule
hasOpNorm
Prod.seminormedAddCommGroup
Prod.normedSpace
fst
Real
Real.instOne
β€”le_antisymm
norm_fst_le
exists_ne
le_opNorm
RingHomIsometric.ids
mul_le_mul_iff_of_pos_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
one_mul
max_eq_left
norm_nonneg
norm_zero
norm_fst_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Prod.instModule
NormedSpace.toModule
hasOpNorm
Prod.seminormedAddCommGroup
Prod.normedSpace
fst
Real.instOne
β€”opNorm_le_bound
zero_le_one
Real.instZeroLEOneClass
one_mul
le_max_left
norm_snd πŸ“–mathematicalβ€”Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prod.instModule
NormedSpace.toModule
hasOpNorm
Prod.seminormedAddCommGroup
Prod.normedSpace
snd
Real
Real.instOne
β€”le_antisymm
norm_snd_le
exists_ne
le_opNorm
RingHomIsometric.ids
mul_le_mul_iff_of_pos_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
one_mul
max_eq_right
norm_nonneg
norm_zero
norm_snd_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Prod.instModule
NormedSpace.toModule
hasOpNorm
Prod.seminormedAddCommGroup
Prod.normedSpace
snd
Real.instOne
β€”opNorm_le_bound
zero_le_one
Real.instZeroLEOneClass
one_mul
le_max_right
opNNNorm_prod πŸ“–mathematicalβ€”NNNorm.nnnorm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
instTopologicalSpaceProd
Prod.instAddCommMonoid
NormedSpace.toModule
Prod.instModule
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
toSeminormedAddCommGroup
Prod.seminormedAddCommGroup
Prod.normedSpace
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
prod
Prod.seminormedAddGroup
β€”RingHomIsometric.ids
opNorm_prod
opNorm_prod πŸ“–mathematicalβ€”Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
instTopologicalSpaceProd
Prod.instAddCommMonoid
NormedSpace.toModule
Prod.instModule
hasOpNorm
Prod.seminormedAddCommGroup
Prod.normedSpace
prod
Prod.toNorm
β€”le_antisymm
opNorm_le_bound
norm_nonneg
RingHomIsometric.ids
max_mul_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
max_le_max
le_opNorm
max_le
LE.le.trans
le_max_left
le_max_right
prodMapL_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instTopologicalSpaceProd
topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
Prod.instAddCommMonoid
addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
Prod.instModule
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
Prod.continuousAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedSpace.toIsBoundedSMul
Prod.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Prod.continuousConstSMul
funLike
prodMapL
prodMap
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
Prod.instIsTopologicalAddGroup
Prod.continuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Prod.smulCommClass
Prod.continuousConstSMul

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
prod_mapL πŸ“–mathematicalContinuousOn
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousLinearMap.prodMap
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.comp_continuousOn
Prod.instIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
Prod.continuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Prod.smulCommClass
Prod.continuousConstSMul
ContinuousLinearMap.continuous
prodMk
prod_map_equivL πŸ“–mathematicalContinuousOn
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearEquiv.toContinuousLinearMap
RingHomInvPair.ids
instTopologicalSpaceProd
Prod.instAddCommMonoid
Prod.instModule
Prod.instAddCommGroup
Prod.instIsTopologicalAddGroup
AddCommGroup.toAddGroup
ContinuousLinearEquiv.prodCongr
β€”RingHomInvPair.ids
SeminormedAddCommGroup.toIsTopologicalAddGroup
prod_mapL

---

← Back to Index