Documentation Verification Report

UpperLower

πŸ“ Source: Mathlib/Analysis/Normed/Order/UpperLower.lean

Statistics

MetricCount
Definitions0
TheoremslowerClosure_pi, upperClosure_pi, lowerClosure_pi, upperClosure_pi, cthickening, cthickening', exists_subset_ball, mem_interior_of_forall_lt, thickening, thickening', cthickening, cthickening', exists_subset_ball, mem_interior_of_forall_lt, thickening, thickening', closure_lowerClosure_comm_pi, closure_upperClosure_comm_pi, dist_anti_left_pi, dist_anti_right_pi, dist_inf_sup_pi, dist_le_dist_of_le_pi, dist_mono_left_pi, dist_mono_right_pi, lowerClosure_interior_subset, lowerClosure_interior_subset', upperClosure_interior_subset, upperClosure_interior_subset'
28
Total28

IsClopen

Theorems

NameKindAssumesProvesValidatesDepends On
lowerClosure_pi πŸ“–mathematicalIsClopen
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
BddAbove
Pi.hasLe
Real.instLE
SetLike.coe
LowerSet
Preorder.toLE
Pi.preorder
Real.instPreorder
LowerSet.instSetLike
lowerClosure
β€”IsClosed.lowerClosure_pi
IsOpen.lowerClosure
IsOrderedAddMonoid.to_hasUpperLowerClosure
Pi.isOrderedAddMonoid
Real.instIsOrderedAddMonoid
UniformContinuousConstVAdd.to_continuousConstVAdd
IsUniformAddGroup.to_uniformContinuousConstVAdd
Pi.instIsUniformAddGroup
instIsUniformAddGroupReal
upperClosure_pi πŸ“–mathematicalIsClopen
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
BddBelow
Pi.hasLe
Real.instLE
SetLike.coe
UpperSet
Preorder.toLE
Pi.preorder
Real.instPreorder
UpperSet.instSetLike
upperClosure
β€”IsClosed.upperClosure_pi
IsOpen.upperClosure
IsOrderedAddMonoid.to_hasUpperLowerClosure
Pi.isOrderedAddMonoid
Real.instIsOrderedAddMonoid
UniformContinuousConstVAdd.to_continuousConstVAdd
IsUniformAddGroup.to_uniformContinuousConstVAdd
Pi.instIsUniformAddGroup
instIsUniformAddGroupReal

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
lowerClosure_pi πŸ“–mathematicalBddAbove
Pi.hasLe
Real
Real.instLE
IsClosed
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SetLike.coe
LowerSet
Preorder.toLE
Pi.preorder
Real.instPreorder
LowerSet.instSetLike
lowerClosure
β€”nonempty_fintype
IsSeqClosed.isClosed
FrechetUrysohnSpace.to_sequentialSpace
FirstCountableTopology.frechetUrysohnSpace
TopologicalSpace.instFirstCountableTopologyForallOfCountable
Finite.to_countable
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
Filter.Tendsto.bddBelow_range
Pi.instBoundedGENhdsClass
BoundedGENhdsClass.of_closedIicTopology
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SemilatticeInf.instIsCodirectedOrder
tendsto_subseq_of_bounded
pi_properSpace
instProperSpaceReal
BddAbove.isBounded_inter
Pi.instIsOrderBornology
Real.instIsOrderBornology
bddBelow_Ici
LE.le.trans
Set.mem_range_self
closure_minimal
Set.inter_subset_left
le_of_tendsto_of_tendsto'
Pi.orderClosedTopology'
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
StrictMono.tendsto_atTop
upperClosure_pi πŸ“–mathematicalBddBelow
Pi.hasLe
Real
Real.instLE
IsClosed
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SetLike.coe
UpperSet
Preorder.toLE
Pi.preorder
Real.instPreorder
UpperSet.instSetLike
upperClosure
β€”nonempty_fintype
IsSeqClosed.isClosed
FrechetUrysohnSpace.to_sequentialSpace
FirstCountableTopology.frechetUrysohnSpace
TopologicalSpace.instFirstCountableTopologyForallOfCountable
Finite.to_countable
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
Filter.Tendsto.bddAbove_range
Pi.instBoundedLENhdsClass
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SemilatticeSup.instIsDirectedOrder
tendsto_subseq_of_bounded
pi_properSpace
instProperSpaceReal
BddBelow.isBounded_inter
Pi.instIsOrderBornology
Real.instIsOrderBornology
bddAbove_Iic
LE.le.trans
Set.mem_range_self
closure_minimal
Set.inter_subset_left
le_of_tendsto_of_tendsto'
Pi.orderClosedTopology'
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
StrictMono.tendsto_atTop

IsLowerSet

Theorems

NameKindAssumesProvesValidatesDepends On
cthickening πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Metric.cthickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”Metric.cthickening_eq_iInter_thickening''
isLowerSet_iInterβ‚‚
thickening
cthickening' πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Metric.cthickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedCommGroup.toMetricSpace
β€”Metric.cthickening_eq_iInter_thickening''
isLowerSet_iInterβ‚‚
thickening'
exists_subset_ball πŸ“–mathematicalIsLowerSet
Pi.hasLe
Real
Real.instLE
Set
Set.instMembership
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Set.instHasSubset
Metric.closedBall
pseudoMetricSpacePi
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
interior
β€”Nat.instAtLeastTwoHAddOfNat
Metric.closedBall_subset_closedBall'
dist_self_sub_left
Function.const_def
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pi_norm_const_le
le_refl
le_of_eq
norm_mul
NormedDivisionRing.toNormMulClass
norm_div
Real.norm_ofNat
abs_of_nonneg
LT.lt.le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Metric.mem_closure_iff
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
zero_lt_four
Real.instZeroLEOneClass
NeZero.charZero_one
mem_interior_of_forall_lt
Finite.of_fintype
subset_closure
LE.le.trans
norm_le_pi_norm
dist_eq_norm
dist_eq_norm'
Metric.mem_closedBall
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
abs_sub_le_iff
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
CancelDenoms.mul_subst
mem_interior_of_forall_lt πŸ“–mathematicalIsLowerSet
Pi.hasLe
Real
Real.instLE
Set
Set.instMembership
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
interiorβ€”nonempty_fintype
Pi.exists_forall_pos_add_lt
Real.instIsOrderedCancelAddMonoid
Real.instNontrivial
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Metric.mem_closure_iff
LT.lt.trans_le
lt_sub_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_le_comm
LE.le.trans
le_abs_self
Real.norm_eq_abs
dist_eq_norm
LT.lt.le
dist_pi_lt_iff
mem_interior
LT.lt.trans
Real.ball_eq_Ioo
ball_pi
Set.mem_univ
Metric.isOpen_ball
Metric.mem_ball_self
thickening πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Metric.thickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”ball_add_zero
add_left
thickening' πŸ“–mathematicalIsLowerSet
Preorder.toLE
PartialOrder.toPreorder
Metric.thickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedCommGroup.toMetricSpace
β€”ball_mul_one
mul_left

IsUpperSet

Theorems

NameKindAssumesProvesValidatesDepends On
cthickening πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Metric.cthickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”Metric.cthickening_eq_iInter_thickening''
isUpperSet_iInterβ‚‚
thickening
cthickening' πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Metric.cthickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedCommGroup.toMetricSpace
β€”Metric.cthickening_eq_iInter_thickening''
isUpperSet_iInterβ‚‚
thickening'
exists_subset_ball πŸ“–mathematicalIsUpperSet
Pi.hasLe
Real
Real.instLE
Set
Set.instMembership
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Real.instZero
Set.instHasSubset
Metric.closedBall
pseudoMetricSpacePi
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
interior
β€”Nat.instAtLeastTwoHAddOfNat
Metric.closedBall_subset_closedBall'
dist_self_add_left
Function.const_def
le_imp_le_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pi_norm_const_le
le_refl
le_of_eq
norm_mul
NormedDivisionRing.toNormMulClass
norm_div
Real.norm_ofNat
abs_of_nonneg
LT.lt.le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Metric.mem_closure_iff
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
zero_lt_four
Real.instZeroLEOneClass
NeZero.charZero_one
mem_interior_of_forall_lt
Finite.of_fintype
subset_closure
LE.le.trans
norm_le_pi_norm
dist_eq_norm
dist_eq_norm'
Metric.mem_closedBall
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
abs_sub_le_iff
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
CancelDenoms.add_subst
CancelDenoms.mul_subst
mem_interior_of_forall_lt πŸ“–mathematicalIsUpperSet
Pi.hasLe
Real
Real.instLE
Set
Set.instMembership
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
interiorβ€”nonempty_fintype
Pi.exists_forall_pos_add_lt
Real.instIsOrderedCancelAddMonoid
Real.instNontrivial
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Metric.mem_closure_iff
LT.lt.trans_le'
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LE.le.trans
le_abs_self
Real.norm_eq_abs
dist_eq_norm'
LT.lt.le
dist_pi_lt_iff
mem_interior
LT.lt.trans
lt_sub_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Real.ball_eq_Ioo
ball_pi
Set.mem_univ
Metric.isOpen_ball
Metric.mem_ball_self
thickening πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Metric.thickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
β€”ball_add_zero
add_left
thickening' πŸ“–mathematicalIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
Metric.thickening
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedCommGroup.toMetricSpace
β€”ball_mul_one
mul_left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_lowerClosure_comm_pi πŸ“–mathematicalBddAbove
Pi.hasLe
Real
Real.instLE
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SetLike.coe
LowerSet
Preorder.toLE
Pi.preorder
Real.instPreorder
LowerSet.instSetLike
lowerClosure
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_minimal
lowerClosure_mono
subset_closure
IsClosed.lowerClosure_pi
isClosed_closure
BddAbove.closure
instClosedIicTopology
Pi.orderClosedTopology'
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
lowerClosure_min
closure_mono
subset_lowerClosure
IsLowerSet.closure
IsOrderedAddMonoid.to_hasUpperLowerClosure
Pi.isOrderedAddMonoid
Real.instIsOrderedAddMonoid
UniformContinuousConstVAdd.to_continuousConstVAdd
IsUniformAddGroup.to_uniformContinuousConstVAdd
Pi.instIsUniformAddGroup
instIsUniformAddGroupReal
LowerSet.lower
closure_upperClosure_comm_pi πŸ“–mathematicalBddBelow
Pi.hasLe
Real
Real.instLE
closure
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SetLike.coe
UpperSet
Preorder.toLE
Pi.preorder
Real.instPreorder
UpperSet.instSetLike
upperClosure
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_minimal
upperClosure_anti
subset_closure
IsClosed.upperClosure_pi
isClosed_closure
BddBelow.closure
instClosedIciTopology
Pi.orderClosedTopology'
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
upperClosure_min
closure_mono
subset_upperClosure
IsUpperSet.closure
IsOrderedAddMonoid.to_hasUpperLowerClosure
Pi.isOrderedAddMonoid
Real.instIsOrderedAddMonoid
UniformContinuousConstVAdd.to_continuousConstVAdd
IsUniformAddGroup.to_uniformContinuousConstVAdd
Pi.instIsUniformAddGroup
instIsUniformAddGroupReal
UpperSet.upper
dist_anti_left_pi πŸ“–mathematicalβ€”AntitoneOn
Real
Pi.preorder
Real.instPreorder
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
Set.Iic
β€”NNReal.coe_le_coe
Finset.sup_mono_fun
Real.nndist_eq'
Real.nnabs_of_nonneg
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.toNNReal_mono
sub_le_sub_left
dist_anti_right_pi πŸ“–mathematicalβ€”AntitoneOn
Real
Pi.preorder
Real.instPreorder
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
Set.Iic
β€”dist_comm
dist_anti_left_pi
dist_inf_sup_pi πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real
Real.pseudoMetricSpace
Pi.instMinForall_mathlib
Real.instMin
Pi.instMaxForall_mathlib
Real.instMax
β€”Finset.sup_congr
Real.nndist_eq'
max_sub_min_eq_abs
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.nnabs_of_nonneg
Real.toNNReal_abs
dist_le_dist_of_le_pi πŸ“–mathematicalPi.hasLe
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
β€”LE.le.trans
dist_mono_right_pi
dist_anti_left_pi
dist_mono_left_pi πŸ“–mathematicalβ€”MonotoneOn
Real
Pi.preorder
Real.instPreorder
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
Set.Ici
β€”NNReal.coe_le_coe
Finset.sup_mono_fun
Real.nndist_eq
Real.nnabs_of_nonneg
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_imp_le_of_le_of_le
Real.toNNReal_mono
sub_le_sub_right
le_refl
dist_mono_right_pi πŸ“–mathematicalβ€”MonotoneOn
Real
Pi.preorder
Real.instPreorder
Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpacePi
Real.pseudoMetricSpace
Set.Ici
β€”dist_comm
dist_mono_left_pi
lowerClosure_interior_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”lowerClosure_min
interior_mono
subset_lowerClosure
IsLowerSet.interior
IsOrderedAddMonoid.to_hasUpperLowerClosure
IsIsometricVAdd.to_continuousConstVAdd
NormedAddGroup.to_isIsometricVAdd_left
LowerSet.lower
lowerClosure_interior_subset' πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
LowerSet.instSetLike
lowerClosure
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedCommGroup.toPseudoMetricSpace
NormedCommGroup.toSeminormedCommGroup
β€”lowerClosure_min
interior_mono
subset_lowerClosure
IsLowerSet.interior
IsOrderedMonoid.to_hasUpperLowerClosure
IsIsometricSMul.to_continuousConstSMul
NormedGroup.to_isIsometricSMul_left
LowerSet.lower
upperClosure_interior_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
β€”upperClosure_min
interior_mono
subset_upperClosure
IsUpperSet.interior
IsOrderedAddMonoid.to_hasUpperLowerClosure
IsIsometricVAdd.to_continuousConstVAdd
NormedAddGroup.to_isIsometricVAdd_left
UpperSet.upper
upperClosure_interior_subset' πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
UpperSet
Preorder.toLE
PartialOrder.toPreorder
UpperSet.instSetLike
upperClosure
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedCommGroup.toPseudoMetricSpace
NormedCommGroup.toSeminormedCommGroup
β€”upperClosure_min
interior_mono
subset_upperClosure
IsUpperSet.interior
IsOrderedMonoid.to_hasUpperLowerClosure
IsIsometricSMul.to_continuousConstSMul
NormedGroup.to_isIsometricSMul_left
UpperSet.upper

---

← Back to Index