Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Analysis/Normed/Ring/Lemmas.lean

Statistics

MetricCount
DefinitionsmulLeft, mulRight, instNormedCommRing, nonUnitalNormedCommRing, nonUnitalNormedRing, nonUnitalSeminormedCommRing, nonUnitalSeminormedRing, normedCommutativeRing, normedRing, seminormedCommRing, seminormedRing, instNonUnitalNormedCommRing, instNonUnitalNormedRing, instNormedCommRing, instNormedRing
15
TheoremsmulLeft_toFun, mulRight_toFun, zero_mul_isBoundedUnder_le, comap_mul_left_cobounded, comap_mul_right_cobounded, isBoundedUnder_le_mul_tendsto_zero, instNormMulClass, instNormOneClass, lipschitzWith_sub, toContinuousMul, toIsTopologicalRing, isometry, inv, instNormOneClass, antilipschitzWith_mul_left, antilipschitzWith_mul_right, tendsto_pow_cobounded_cobounded
17
Total32

Dilation

Definitions

NameCategoryTheorems
mulLeft πŸ“–CompOp
1 mathmath: mulLeft_toFun
mulRight πŸ“–CompOp
1 mathmath: mulRight_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
mulLeft_toFun πŸ“–mathematicalβ€”DFunLike.coe
Dilation
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NonUnitalNormedRing.toMetricSpace
funLike
mulLeft
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”β€”
mulRight_toFun πŸ“–mathematicalβ€”DFunLike.coe
Dilation
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NonUnitalNormedRing.toMetricSpace
funLike
mulRight
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”β€”

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
comap_mul_left_cobounded πŸ“–mathematicalβ€”comap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Bornology.cobounded
PseudoMetricSpace.toBornology
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
β€”Dilation.comap_cobounded
Dilation.toDilationClass
comap_mul_right_cobounded πŸ“–mathematicalβ€”comap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
Bornology.cobounded
PseudoMetricSpace.toBornology
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
β€”Dilation.comap_cobounded
Dilation.toDilationClass
isBoundedUnder_le_mul_tendsto_zero πŸ“–mathematicalIsBoundedUnder
Real
Real.instLE
Norm.norm
NonUnitalSeminormedRing.toNorm
Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Tendsto.op_zero_isBoundedUnder_le
LE.le.trans_eq
norm_mul_le
mul_comm

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
zero_mul_isBoundedUnder_le πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
NonUnitalSeminormedRing.toNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”op_zero_isBoundedUnder_le
norm_mul_le

Int

Definitions

NameCategoryTheorems
instNormedCommRing πŸ“–CompOp
106 mathmath: ValueDistribution.logCounting_zero, tendsto_zero_iff_meromorphicOrderAt_pos, MeromorphicOn.codiscrete_setOf_meromorphicOrderAt_eq_zero_or_top, Function.FactorizedRational.divisor, Function.locallyFinsuppWithin.toClosedBall_support_subset_closedBall, MeromorphicOn.divisor_fun_smul, meromorphicOrderAt_const_ofNat, Padic.withValUniformEquiv_norm_le_one_iff, tendsto_cobounded_iff_meromorphicOrderAt_neg, meromorphicOrderAt_const, Padic.AddValuation.map_one, EisensteinSeries.summand_bound_of_mem_verticalStrip, enorm_natCast, PadicInt.nthHom_zero, padicValuation_lt_one_iff, MeromorphicOn.divisor_const, MeromorphicNFAt.meromorphicOrderAt_nonneg_iff_analyticAt, EisensteinSeries.abs_le_right_of_norm, padicValuation_eq_one_iff, MeromorphicOn.divisor_pow, Function.locallyFinsuppWithin.logCounting_eval_zero, MeromorphicOn.divisor_natCast, ValueDistribution.logCounting_top, meromorphicOrderAt_ne_top_iff, MeromorphicOn.divisor_inv, MeromorphicOn.divisor_fun_pow, Function.FactorizedRational.mulSupport, MeromorphicOn.divisor_sub_const_self, MeromorphicAt.tendsto_nhds_meromorphicTrailingCoeffAt, meromorphicOrderAt_const_natCast, MeromorphicOn.divisor_intCast, AnalyticAt.meromorphicOrderAt_nonneg, UnitAddTorus.mFourier_zero, MeromorphicOn.divisor_sub_const_of_ne, NumberField.InfinitePlace.ComplexEmbedding.conjugate_sign, tendsto_nhds_iff_meromorphicOrderAt_nonneg, MeromorphicOn.negPart_divisor_add_of_analyticNhdOn_right, EisensteinSeries.norm_eq_max_natAbs, Function.locallyFinsuppWithin.toClosedBall_divisor, MeromorphicOn.negPart_divisor_add_of_analyticNhdOn_left, meromorphicNFAt_iff_analyticAt_or, MeromorphicOn.divisor_ofNat, MeromorphicOn.divisor_fun_zpow, MeromorphicOn.divisor_apply, MeromorphicOn.divisor_fun_mul, MeromorphicOn.divisor_zpow, EisensteinSeries.summable_one_div_norm_rpow, toNat_add_toNat_neg_eq_norm, instNormMulClass, tendsto_ne_zero_iff_meromorphicOrderAt_eq_zero, EisensteinSeries.vecMul_SL2_mem_gammaSet, ValueDistribution.characteristic_sub_characteristic_inv, MeromorphicOn.divisor_restrict, EisensteinSeries.isBigO_linear_add_const_vec, EisensteinSeries.r_mul_max_le, EisensteinSeries.norm_symm, MeromorphicNFOn.divisor_nonneg_iff_analyticOnNhd, locallyFinsuppWithin.logCounting_divisor, Matrix.one_le_norm_A_of_ne_zero, MeromorphicOn.divisor_fun_inv, MeromorphicNFOn.zero_set_eq_divisor_support, MeromorphicOn.circleAverage_log_norm, Function.locallyFinsuppWithin.logCounting_divisor_eq_circleAverage_sub_const, MeromorphicOn.AnalyticOnNhd.divisor_nonneg, circleAverage_log_norm_factorizedRational, nnnorm_coe_units, MeromorphicOn.min_divisor_le_divisor_add, meromorphicOrderAt_pow, MeromorphicOn.extract_zeros_poles, MeromorphicOn.negPart_divisor_add_le_max, MeromorphicOn.divisor_smul, EisensteinSeries.abs_le_left_of_norm, nnnorm_natCast, EisensteinSeries.vecMulSL_gcd, EisensteinSeries.abs_norm_eq_max_natAbs, Complex.nnnorm_intCast, meromorphicOrderAt_zpow, Profinite.NobelingProof.CC_comp_zero, norm_coe_units, EisensteinSeries.abs_norm_eq_max_natAbs_neg, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, toNat_add_toNat_neg_eq_nnnorm, MeromorphicOn.negPart_divisor_add_le_add, UnitAddTorus.mFourier_single, Padic.norm_rat_le_one_iff_padicValuation_le_one, NumberField.InfinitePlace.map_intCast, RCLike.instNormSMulClassInt, meromorphicOrderAt_of_not_meromorphicAt, EisensteinSeries.eisSummand_SL2_apply, meromorphicOrderAt_const_intCast, MeromorphicNFAt.meromorphicOrderAt_eq_zero_iff, MeromorphicOn.divisor_def, padicValuation_le_one, ValueDistribution.logCounting_coe, ValueDistribution.log_counting_zero_sub_logCounting_top, instNormOneClass, MeromorphicOn.divisor_mul, EisensteinSeries.vec_add_const_isTheta, Function.locallyFinsuppWithin.logCounting_even, EisensteinSeries.summand_bound, Matrix.exists_ne_zero_int_vec_norm_le, MeromorphicAt.meromorphicOrderAt_comp, EisensteinSeries.div_max_sq_ge_one, Rat.padicValuation_le_one_iff, Matrix.exists_ne_zero_int_vec_norm_le', Function.locallyFinsuppWithin.toClosedBall_eval_within

Theorems

NameKindAssumesProvesValidatesDepends On
instNormMulClass πŸ“–mathematicalβ€”NormMulClass
NormedRing.toNorm
NormedCommRing.toNormedRing
instNormedCommRing
β€”cast_mul
abs_mul
Real.instIsOrderedRing
instNormOneClass πŸ“–mathematicalβ€”NormOneClass
NormedRing.toNorm
NormedCommRing.toNormedRing
instNormedCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
instRing
β€”cast_one
abs_one
Real.instIsOrderedRing

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
lipschitzWith_sub πŸ“–mathematicalβ€”LipschitzWith
NNReal
Prod.pseudoEMetricSpaceMax
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpaceNNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Nat.instAtLeastTwoHAddOfNat
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Isometry.lipschitzWith_iff
isometry_subtype_coe
Isometry.prodMap
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Nat.cast_one
LipschitzWith.max_const
LipschitzWith.sub
LipschitzWith.comp
LipschitzWith.prod_fst
Isometry.lipschitz
LipschitzWith.prod_snd

NonUnitalSeminormedRing

Theorems

NameKindAssumesProvesValidatesDepends On
toContinuousMul πŸ“–mathematicalβ€”ContinuousMul
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
toPseudoMetricSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
toNonUnitalRing
β€”continuous_iff_continuousAt
tendsto_iff_norm_sub_tendsto_zero
mul_sub
sub_mul
sub_add_sub_cancel
le_refl
norm_add_le_of_le
norm_mul_le
squeeze_zero
norm_nonneg
sub_self
norm_zero
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
Filter.Tendsto.norm
Continuous.tendsto
continuous_fst
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_snd
tendsto_const_nhds
toIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
toPseudoMetricSpace
NonUnitalRing.toNonUnitalNonAssocRing
toNonUnitalRing
β€”IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
toContinuousMul
IsTopologicalAddGroup.toContinuousNeg

Pi

Definitions

NameCategoryTheorems
nonUnitalNormedCommRing πŸ“–CompOpβ€”
nonUnitalNormedRing πŸ“–CompOp
2 mathmath: cstarRing', cstarRing
nonUnitalSeminormedCommRing πŸ“–CompOpβ€”
nonUnitalSeminormedRing πŸ“–CompOp
1 mathmath: Matrix.linfty_opNorm_mulVec
normedCommutativeRing πŸ“–CompOpβ€”
normedRing πŸ“–CompOp
19 mathmath: NumberField.mixedEmbedding.norm_eq_sup'_normAtPlace, EisensteinSeries.summand_bound_of_mem_verticalStrip, NumberField.mixedEmbedding.norm_le_convexBodySumFun, EisensteinSeries.abs_le_right_of_norm, Matrix.l2_opNorm_diagonal, EisensteinSeries.norm_eq_max_natAbs, EisensteinSeries.summable_one_div_norm_rpow, EisensteinSeries.isBigO_linear_add_const_vec, EisensteinSeries.r_mul_max_le, EisensteinSeries.norm_symm, NumberField.canonicalEmbedding.norm_le_iff, EisensteinSeries.abs_le_left_of_norm, EisensteinSeries.abs_norm_eq_max_natAbs, EisensteinSeries.abs_norm_eq_max_natAbs_neg, EisensteinSeries.vec_add_const_isTheta, EisensteinSeries.summand_bound, Int.Matrix.exists_ne_zero_int_vec_norm_le, EisensteinSeries.div_max_sq_ge_one, Int.Matrix.exists_ne_zero_int_vec_norm_le'
seminormedCommRing πŸ“–CompOpβ€”
seminormedRing πŸ“–CompOpβ€”

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
isometry πŸ“–mathematicalβ€”Isometry
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedRing.toPseudoMetricSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
SeminormedRing.toRing
instFunLike
β€”AddMonoidHomClass.isometry_of_norm
RingHomClass.toAddMonoidHomClass
instRingHomClass
RingHomIsometric.norm_map

RingHomIsometric

Theorems

NameKindAssumesProvesValidatesDepends On
inv πŸ“–mathematicalβ€”RingHomIsometric
Ring.toSemiring
SeminormedRing.toRing
SeminormedRing.toNorm
β€”norm_map
RingHomInvPair.comp_apply_eqβ‚‚

SeparationQuotient

Definitions

NameCategoryTheorems
instNonUnitalNormedCommRing πŸ“–CompOpβ€”
instNonUnitalNormedRing πŸ“–CompOpβ€”
instNormedCommRing πŸ“–CompOpβ€”
instNormedRing πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instNormOneClass πŸ“–mathematicalβ€”NormOneClass
SeparationQuotient
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
instNorm
instOne
β€”NormOneClass.norm_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
antilipschitzWith_mul_left πŸ“–mathematicalβ€”AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NonUnitalNormedRing.toMetricSpace
NNReal
NNReal.instInv
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”AntilipschitzWith.of_le_mul_dist
dist_eq_norm
norm_mul
inv_mul_cancel_leftβ‚€
antilipschitzWith_mul_right πŸ“–mathematicalβ€”AntilipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NonUnitalNormedRing.toMetricSpace
NNReal
NNReal.instInv
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
β€”AntilipschitzWith.of_le_mul_dist
dist_eq_norm
norm_mul
mul_comm
inv_mul_cancel_leftβ‚€
tendsto_pow_cobounded_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
β€”norm_pow
Filter.Tendsto.comp
Filter.tendsto_pow_atTop
Real.instIsOrderedRing
tendsto_norm_cobounded_atTop

---

← Back to Index