Documentation Verification Report

Units

πŸ“ Source: Mathlib/Analysis/Normed/Ring/Units.lean

Statistics

MetricCount
Definitionsadd, ofNearby
2
Theoremsclosure_eq, isClosed, closure_ne_top, eq_top_of_norm_lt_one, inverse_add, inverse_add_norm, inverse_add_norm_diff_first_order, inverse_add_norm_diff_nth_order, inverse_add_norm_diff_second_order, inverse_add_nth_order, inverse_continuousAt, inverse_one_sub, inverse_one_sub_norm, inverse_one_sub_nth_order, inverse_one_sub_nth_order', isOpen, isOpenEmbedding_val, isOpenMap_val, nhds, val_add, val_ofNearby, isClosed, subset_compl_ball
23
Total25

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
closure_ne_top πŸ“–β€”β€”β€”β€”closure_minimal
coe_subset_nonunits
nonunits.isClosed
NonUnitalSeminormedRing.toIsTopologicalRing
eq_top_iff_one
one_notMem_nonunits
eq_top_of_norm_lt_one πŸ“–mathematicalIdeal
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Real
Real.instLT
Norm.norm
NormedRing.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
Top.top
Submodule.instTop
β€”eq_top_iff_one
sub_sub_cancel
mul_mem_left

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq πŸ“–mathematicalβ€”Ideal.closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedRing.toRing
NonUnitalSeminormedRing.toIsTopologicalRing
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
β€”NonUnitalSeminormedRing.toIsTopologicalRing
eq_of_le
Ideal.closure_ne_top
ne_top
subset_closure
isClosed πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
SetLike.coe
Ideal
Ring.toSemiring
NormedRing.toRing
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”isClosed_of_closure_subset
Eq.subset
Set.instReflSubset
NonUnitalSeminormedRing.toIsTopologicalRing
closure_eq

NormedRing

Theorems

NameKindAssumesProvesValidatesDepends On
inverse_add πŸ“–mathematicalβ€”Filter.Eventually
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Units.val
MonoidWithZero.toMonoid
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Units
Units.instInv
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
nhds_discrete
Finite.instDiscreteTopology
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_subsingleton
Metric.eventually_nhds_iff
CancelDenoms.cancel_factors_lt
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
one_mul
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
dist_zero_right
Units.val_add
Ring.inverse_unit
Units.add.eq_1
Units.copy_eq
mul_inv_rev
Units.val_mul
Units.val_oneSub
sub_neg_eq_add
inverse_add_norm πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Units.val
MonoidWithZero.toMonoid
Real.instOne
β€”Filter.EventuallyEq.trans_isBigO
inverse_add
Continuous.tendsto'
mulLeft_continuous
NonUnitalSeminormedRing.toIsTopologicalRing
MulZeroClass.mul_zero
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
Asymptotics.IsBigO.comp_tendsto
inverse_one_sub_norm
Asymptotics.isBigO_const_const
one_ne_zero
NeZero.one
Real.instNontrivial
one_mul
inverse_add_norm_diff_first_order πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Units.val
MonoidWithZero.toMonoid
Units
Units.instInv
Norm.norm
β€”Finset.sum_congr
neg_mul
Finset.sum_singleton
pow_zero
one_mul
pow_one
inverse_add_norm_diff_nth_order
inverse_add_norm_diff_nth_order πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Units.val
MonoidWithZero.toMonoid
Distrib.toMul
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
Monoid.toNatPow
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Units
Units.instInv
Real.instMonoid
Norm.norm
β€”Filter.EventuallyEq.trans_isBigO
Filter.EventuallyEq.fun_sub
inverse_add_nth_order
Filter.EventuallyEq.refl
add_sub_cancel_left
Asymptotics.IsBigO.trans
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
Asymptotics.IsBigO.norm_right
Asymptotics.isBigO_refl
inverse_add_norm
mul_one
Asymptotics.IsBigO.pow
NormedDivisionRing.to_normOneClass
Asymptotics.IsBigO.const_mul_left
inverse_add_norm_diff_second_order πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
Units.val
MonoidWithZero.toMonoid
Units
Units.instInv
Distrib.toMul
Monoid.toNatPow
Real.instMonoid
Norm.norm
β€”Finset.sum_congr
neg_mul
Finset.sum_range_succ
Finset.sum_range_zero
pow_zero
zero_add
pow_one
add_mul
Distrib.rightDistribClass
one_mul
sub_neg_eq_add
inverse_add_norm_diff_nth_order
inverse_add_nth_order πŸ“–mathematicalβ€”Filter.Eventually
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Units.val
MonoidWithZero.toMonoid
Distrib.toMul
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
Finset.range
Monoid.toNatPow
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Units
Units.instInv
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Continuous.tendsto'
mulLeft_continuous
NonUnitalSeminormedRing.toIsTopologicalRing
MulZeroClass.mul_zero
Filter.mp_mem
Filter.Tendsto.eventually
inverse_one_sub_nth_order
inverse_add
Filter.univ_mem'
sub_neg_eq_add
neg_mul
add_mul
Distrib.rightDistribClass
mul_assoc
inverse_continuousAt πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
Units.val
MonoidWithZero.toMonoid
β€”Asymptotics.IsBigO.trans_isLittleO
inverse_add_norm_diff_first_order
Asymptotics.IsLittleO.norm_left
Asymptotics.isLittleO_id_const
one_ne_zero
NeZero.one
Real.instNontrivial
tendsto_zero_iff_norm_tendsto_zero
tendsto_iff_norm_sub_tendsto_zero
Filter.tendsto_id
ContinuousAt.eq_1
Ring.inverse_unit
div_one
add_sub_cancel
Filter.Tendsto.comp
Asymptotics.IsLittleO.tendsto_div_nhds_zero
inverse_one_sub πŸ“–mathematicalReal
Real.instLT
Norm.norm
toNorm
Real.instOne
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Units.val
MonoidWithZero.toMonoid
Units
Units.instInv
Units.oneSub
β€”Ring.inverse_unit
Units.val_oneSub
inverse_one_sub_norm πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
toNorm
Real.norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
β€”Asymptotics.IsBigO_def
Asymptotics.IsBigOWith_def
Nat.instAtLeastTwoHAddOfNat
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
Real.instNontrivial
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
dist_zero_right
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
inverse_one_sub
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
mul_one
tsum_geometric_le_of_norm_lt_one
inv_le_of_inv_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_not_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.add_subst
inverse_one_sub_nth_order πŸ“–mathematicalβ€”Filter.Eventually
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Distrib.toMul
nhds
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Metric.eventually_nhds_iff
one_pos
Real.instZeroLEOneClass
NeZero.one
Real.instNontrivial
inverse_one_sub_nth_order'
dist_zero_right
inverse_one_sub_nth_order' πŸ“–mathematicalReal
Real.instLT
Norm.norm
toNorm
Real.instOne
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Distrib.toMul
β€”summable_geometric_of_norm_lt_one
inverse_one_sub
Summable.sum_add_tsum_nat_add
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
add_comm
pow_add
Summable.tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
SummationFilter.instNeBotUnconditional

Units

Definitions

NameCategoryTheorems
add πŸ“–CompOp
1 mathmath: val_add
ofNearby πŸ“–CompOp
1 mathmath: val_ofNearby

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
setOf
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
Finite.instDiscreteTopology
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_subsingleton
Metric.isOpen_iff
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos
isUnit
mem_ball_iff_norm
isOpenEmbedding_val πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
instTopologicalSpaceUnits
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
val
β€”isEmbedding_val_mk'
ContinuousAt.continuousWithinAt
NormedRing.inverse_continuousAt
Ring.inverse_unit
isOpen
isOpenMap_val πŸ“–mathematicalβ€”IsOpenMap
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
instTopologicalSpaceUnits
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
val
β€”Topology.IsOpenEmbedding.isOpenMap
isOpenEmbedding_val
nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
setOf
IsUnit
β€”IsOpen.mem_nhds
isOpen
isUnit
val_add πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
Real.instInv
val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Units
instInv
add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
val_ofNearby πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Real.instInv
Units
instInv
ofNearbyβ€”β€”

nonunits

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
β€”IsOpen.isClosed_compl
Units.isOpen
subset_compl_ball πŸ“–mathematicalβ€”Set
Set.instHasSubset
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
Compl.compl
Set.instCompl
Metric.ball
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real
Real.instOne
β€”Units.isUnit
mem_ball_iff_norm'
sub_sub_self

---

← Back to Index