Documentation Verification Report

FiniteExtension

πŸ“ Source: Mathlib/Analysis/Normed/Unbundled/FiniteExtension.lean

Statistics

MetricCount
Definitionsnorm
1
Theoremsnorm_extends, norm_isNonarchimedean, norm_mul_le_const_mul_norm, norm_neg, norm_nonneg, norm_repr_le_norm, norm_smul, norm_zero, exists_nonarchimedean_pow_mul_seminorm_of_finiteDimensional
9
Total10

Module.Basis

Definitions

NameCategoryTheorems
norm πŸ“–CompOp
8 mathmath: norm_mul_le_const_mul_norm, norm_smul, norm_isNonarchimedean, norm_neg, norm_nonneg, norm_zero, norm_extends, norm_repr_le_norm

Theorems

NameKindAssumesProvesValidatesDepends On
norm_extends πŸ“–mathematicalDFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
instFunLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
norm
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
β€”Finset.univ_nonempty
Finset.sup'_congr
repr_algebraMap
Finsupp.single_apply
le_antisymm
norm_zero
Finset.le_sup'_of_le
Finset.mem_univ
norm_isNonarchimedean πŸ“–mathematicalIsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Norm.norm
NormedField.toNorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
norm
β€”Finset.univ_nonempty
RingHomInvPair.ids
Finset.exists_mem_eq_sup'
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.coe_add
Pi.add_apply
norm.eq_1
le_max_iff
le_max_of_le_left
le_trans
norm_repr_le_norm
le_max_of_le_right
norm_mul_le_const_mul_norm πŸ“–mathematicalDFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
instFunLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Norm.norm
NormedField.toNorm
Real.instLE
norm
Distrib.toMul
Real.instMul
β€”Finset.univ_nonempty
Finset.exists_mem_eq_sup'
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
norm_extends
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_lt_of_le
Finset.le_sup'
Finset.mem_univ
RingHomInvPair.ids
sum_repr
Finset.sum_mul
map_finset_sum
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
Finset.sum_congr
smul_mul_assoc
IsScalarTower.right
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
Finset.mul_sum
mul_smul_comm
Algebra.to_smulCommClass
IsNonarchimedean.finset_image_add
MonoidWithZeroHomClass.toZeroHomClass
MulRingSeminormClass.toMonoidWithZeroHomClass
MulRingNormClass.toMulRingSeminormClass
MulRingNorm.mulRingNormClass
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
RingNormClass.toRingSeminormClass
MulRingNormClass.toRingNormClass
Finsupp.coe_finset_sum
Finset.sum_apply
le_trans
norm_mul
NormedDivisionRing.toNormMulClass
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
norm_smul
NormedSpace.toNormSMulClass
mul_assoc
mul_comm
mul_le_mul
IsOrderedRing.toMulPosMono
norm_repr_le_norm
norm_nonneg
mul_nonneg
norm_neg πŸ“–mathematicalβ€”norm
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”Finset.univ_nonempty
Finset.sup'_congr
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
norm_neg
norm_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
norm
β€”Finset.univ_nonempty
norm_repr_le_norm πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NormedField.toNorm
DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finsupp.instAddCommMonoid
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
repr
norm
β€”Finset.le_sup'
RingHomInvPair.ids
Finset.mem_univ
norm_smul πŸ“–mathematicalDFunLike.coe
Module.Basis
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Semifield.toCommSemiring
Ring.toSemiring
instFunLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
norm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Real
Real.instMul
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
norm_zero
norm_extends
Finset.univ_nonempty
RingHomInvPair.ids
Finset.exists_mem_eq_sup'
le_antisymm
Finset.mem_univ
Finset.le_sup'
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
lt_of_le_of_ne
norm_nonneg
norm_ne_zero_iff
repr_smul'
norm_mul
NormedDivisionRing.toNormMulClass
Finset.sup'_congr
norm_repr_le_norm
norm_zero πŸ“–mathematicalβ€”norm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Real
Real.instZero
β€”Finset.univ_nonempty
Finset.sup'_congr
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
norm_zero
Finset.sup'_const

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_nonarchimedean_pow_mul_seminorm_of_finiteDimensional πŸ“–mathematicalIsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Norm.norm
NormedField.toNorm
IsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
DivisionRing.toRing
Field.toDivisionRing
AlgebraNorm.instFunLikeReal
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
RingHom.instFunLike
algebraMap
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”LinearIndepOn.singleton
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
one_ne_zero
NeZero.one
EuclideanDomain.toNontrivial
Set.subset_univ
Module.Basis.subset_extend
Set.mem_singleton
Module.Basis.coe_extend
Module.Basis.index_nonempty
Module.Basis.norm_zero
Finset.univ_nonempty
Module.Basis.norm_extends
Module.Basis.norm_isNonarchimedean
IsNonarchimedean.add_le
Real.instIsStrictOrderedRing
Module.Basis.norm_neg
Module.Basis.norm_mul_le_const_mul_norm
Module.Basis.norm_smul
seminormFromBounded_isNonarchimedean
seminormFromBounded_one_le
seminormFromBounded_of_mul_apply
smoothingSeminorm_apply_of_map_mul_eq_mul
seminormFromBounded_of_mul_is_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
DFunLike.ne_iff
NeZero.charZero_one
RCLike.charZero_rclike
RingSeminorm.toRingNorm.congr_simp
smoothingSeminorm_of_mul
Algebra.smul_def
isPowMul_smoothingFun
isNonarchimedean_smoothingFun

---

← Back to Index