Documentation Verification Report

RingSeminorm

πŸ“ Source: Mathlib/Analysis/Normed/Unbundled/RingSeminorm.lean

Statistics

MetricCount
DefinitionsMulRingNorm, funLike, instInhabited, instOne, mulRingNormEquivAbsoluteValue, toAddGroupNorm, toMulRingSeminorm, MulRingSeminorm, funLike, instInhabited, instOne, toAddGroupSeminorm, toMonoidWithZeroHom, toAbsoluteValue, toMulRingNorm, toRingNorm, RingNorm, funLike, instInhabitedOfDecidableEq, instOneOfDecidableEq, toAddGroupNorm, toNormedRing, toRingSeminorm, RingSeminorm, funLike, instInhabited, instOneOfDecidableEq, instZero, toAddGroupSeminorm, toRingNorm, toRingSeminorm, normRingNorm, normRingSeminorm
33
Theoremsapply_one, eq_zero_of_map_eq_zero', ext, ext_iff, mulRingNormClass, mulRingNormEquivAbsoluteValue_apply, mulRingNormEquivAbsoluteValue_symm_apply, toFun_eq_coe, apply_one, ext, ext_iff, map_mul', map_one', mulRingSeminormClass, toFun_eq_coe, toRingNorm_apply, toRingNorm_toFun, apply_one, eq_zero_of_map_eq_zero', ext, ext_iff, ringNormClass, toFun_eq_coe, apply_one, eq_zero_iff, exists_index_pow_le, ext, ext_iff, isBoundedUnder, mul_le', ne_zero_iff, ringSeminormClass, seminorm_one_eq_one_iff_ne_zero, toFun_eq_coe, toRingSeminorm_apply, map_pow_le_pow, map_pow_le_pow', normRingNorm_toFun
38
Total71

MulRingNorm

Definitions

NameCategoryTheorems
funLike πŸ“–CompOp
7 mathmath: ext_iff, mulRingNormClass, mulRingNormEquivAbsoluteValue_symm_apply, toFun_eq_coe, mulRingNormEquivAbsoluteValue_apply, isPowMul, apply_one
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: apply_one
mulRingNormEquivAbsoluteValue πŸ“–CompOp
2 mathmath: mulRingNormEquivAbsoluteValue_symm_apply, mulRingNormEquivAbsoluteValue_apply
toAddGroupNorm πŸ“–CompOpβ€”
toMulRingSeminorm πŸ“–CompOp
3 mathmath: MulAlgebraNorm.toFun_eq_coe, toFun_eq_coe, MulAlgebraNorm.smul'

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one πŸ“–mathematicalβ€”DFunLike.coe
MulRingNorm
Real
funLike
instOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Real.instZero
Real.instOne
β€”β€”
eq_zero_of_map_eq_zero' πŸ“–mathematicalAddGroupSeminorm.toFun
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
MulRingSeminorm.toAddGroupSeminorm
toMulRingSeminorm
Real
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
ext πŸ“–β€”DFunLike.coe
MulRingNorm
Real
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MulRingNorm
Real
funLike
β€”ext
mulRingNormClass πŸ“–mathematicalβ€”MulRingNormClass
MulRingNorm
Real
Real.semiring
Real.partialOrder
funLike
β€”AddGroupSeminorm.add_le'
AddGroupSeminorm.map_zero'
AddGroupSeminorm.neg'
MulRingSeminorm.map_mul'
MulRingSeminorm.map_one'
eq_zero_of_map_eq_zero'
mulRingNormEquivAbsoluteValue_apply πŸ“–mathematicalβ€”DFunLike.coe
AbsoluteValue
Real
Ring.toSemiring
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
Equiv
MulRingNorm
Ring.toNonAssocRing
EquivLike.toFunLike
Equiv.instEquivLike
mulRingNormEquivAbsoluteValue
funLike
β€”β€”
mulRingNormEquivAbsoluteValue_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulRingNorm
Ring.toNonAssocRing
Real
funLike
Equiv
AbsoluteValue
Ring.toSemiring
Real.semiring
Real.partialOrder
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mulRingNormEquivAbsoluteValue
AbsoluteValue.funLike
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
MulRingSeminorm.toAddGroupSeminorm
toMulRingSeminorm
DFunLike.coe
MulRingNorm
Real
funLike
β€”β€”

MulRingSeminorm

Definitions

NameCategoryTheorems
funLike πŸ“–CompOp
4 mathmath: apply_one, mulRingSeminormClass, toFun_eq_coe, ext_iff
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: apply_one
toAddGroupSeminorm πŸ“–CompOp
6 mathmath: map_mul', MulAlgebraNorm.toFun_eq_coe, MulRingNorm.toFun_eq_coe, toFun_eq_coe, map_one', MulAlgebraNorm.smul'
toMonoidWithZeroHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one πŸ“–mathematicalβ€”DFunLike.coe
MulRingSeminorm
Real
funLike
instOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Real.instZero
Real.instOne
β€”β€”
ext πŸ“–β€”DFunLike.coe
MulRingSeminorm
Real
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
MulRingSeminorm
Real
funLike
β€”ext
map_mul' πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
toAddGroupSeminorm
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
NonAssocRing.toNonAssocSemiring
Real
Semiring.toNonAssocSemiring
Real.semiring
β€”β€”
map_one' πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
toAddGroupSeminorm
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
NonAssocRing.toNonAssocSemiring
Real
Semiring.toNonAssocSemiring
Real.semiring
β€”β€”
mulRingSeminormClass πŸ“–mathematicalβ€”MulRingSeminormClass
MulRingSeminorm
Real
Real.semiring
Real.partialOrder
funLike
β€”AddGroupSeminorm.add_le'
AddGroupSeminorm.map_zero'
AddGroupSeminorm.neg'
map_mul'
map_one'
toFun_eq_coe πŸ“–mathematicalβ€”DFunLike.coe
AddGroupSeminorm
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Real
AddGroupSeminorm.funLike
toAddGroupSeminorm
MulRingSeminorm
funLike
β€”β€”

NormedField

Definitions

NameCategoryTheorems
toAbsoluteValue πŸ“–CompOpβ€”
toMulRingNorm πŸ“–CompOpβ€”

NormedRing

Definitions

NameCategoryTheorems
toRingNorm πŸ“–CompOp
2 mathmath: toRingNorm_toFun, toRingNorm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toRingNorm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingNorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Real
RingNorm.funLike
NonUnitalNormedRing.toNonUnitalRing
toNonUnitalNormedRing
toRingNorm
Norm.norm
toNorm
β€”β€”
toRingNorm_toFun πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
RingSeminorm.toAddGroupSeminorm
RingNorm.toRingSeminorm
toRingNorm
Norm.norm
toNorm
β€”β€”

RingNorm

Definitions

NameCategoryTheorems
funLike πŸ“–CompOp
6 mathmath: apply_one, toFun_eq_coe, ringNormClass, ext_iff, NormedRing.toRingNorm_apply, seminormFromConstRingNormOfField_def
instInhabitedOfDecidableEq πŸ“–CompOpβ€”
instOneOfDecidableEq πŸ“–CompOp
1 mathmath: apply_one
toAddGroupNorm πŸ“–CompOpβ€”
toNormedRing πŸ“–CompOpβ€”
toRingSeminorm πŸ“–CompOp
5 mathmath: NormedRing.toRingNorm_toFun, AlgebraNorm.smul', AlgebraNorm.toFun_eq_coe, normRingNorm_toFun, toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one πŸ“–mathematicalβ€”DFunLike.coe
RingNorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
instOneOfDecidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Real.instZero
Real.instOne
β€”β€”
eq_zero_of_map_eq_zero' πŸ“–mathematicalAddGroupSeminorm.toFun
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
RingSeminorm.toAddGroupSeminorm
toRingSeminorm
Real
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
ext πŸ“–β€”DFunLike.coe
RingNorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RingNorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
β€”ext
ringNormClass πŸ“–mathematicalβ€”RingNormClass
RingNorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
Real.semiring
Real.partialOrder
funLike
β€”AddGroupSeminorm.add_le'
AddGroupSeminorm.map_zero'
AddGroupSeminorm.neg'
RingSeminorm.mul_le'
eq_zero_of_map_eq_zero'
toFun_eq_coe πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
RingSeminorm.toAddGroupSeminorm
toRingSeminorm
DFunLike.coe
RingNorm
Real
funLike
β€”β€”

RingSeminorm

Definitions

NameCategoryTheorems
funLike πŸ“–CompOp
11 mathmath: ringSeminormClass, smoothingFun_le, eq_zero_iff, toFun_eq_coe, smoothingFun_le_self, zero_mem_lowerBounds_smoothingSeminormSeq_range, smoothingSeminormSeq_bddBelow, ext_iff, apply_one, SeminormedRing.toRingSeminorm_apply, seminormFromConst_seq_def
instInhabited πŸ“–CompOpβ€”
instOneOfDecidableEq πŸ“–CompOp
1 mathmath: apply_one
instZero πŸ“–CompOp
1 mathmath: eq_zero_iff
toAddGroupSeminorm πŸ“–CompOp
7 mathmath: NormedRing.toRingNorm_toFun, AlgebraNorm.smul', AlgebraNorm.toFun_eq_coe, normRingNorm_toFun, mul_le', RingNorm.toFun_eq_coe, toFun_eq_coe
toRingNorm πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one πŸ“–mathematicalβ€”DFunLike.coe
RingSeminorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
instOneOfDecidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Real.instZero
Real.instOne
β€”β€”
eq_zero_iff πŸ“–mathematicalβ€”RingSeminorm
NonUnitalRing.toNonUnitalNonAssocRing
instZero
DFunLike.coe
Real
funLike
Real.instZero
β€”DFunLike.ext_iff
exists_index_pow_le πŸ“–mathematicalIsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingSeminorm
funLike
NonUnitalCommRing.toNonUnitalRing
Real.instLE
Real.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Real.instMul
β€”IsNonarchimedean.add_pow_le
AddGroupSeminormClass.toZeroHomClass
RingSeminormClass.toAddGroupSeminormClass
ringSeminormClass
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
RingSeminormClass.toSubmultiplicativeHomClass
Real.rpow_le_rpow
NonnegHomClass.apply_nonneg
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
ext πŸ“–β€”DFunLike.coe
RingSeminorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
RingSeminorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
funLike
β€”ext
isBoundedUnder πŸ“–mathematicalReal
Real.instLE
DFunLike.coe
RingSeminorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
funLike
Ring.toNonUnitalRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
Filter.IsBoundedUnder
Filter.atTop
Nat.instPreorder
Real.instPow
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
β€”mul_one_div
Real.rpow_mul
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
ringSeminormClass
Real.rpow_natCast
le_imp_le_of_le_of_le
Real.rpow_le_rpow
map_pow_le_pow'
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
le_refl
Filter.isBoundedUnder_of
le_or_gt
le_trans
Real.rpow_le_one
div_nonneg
Real.rpow_le_self_of_one_le
LT.lt.le
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
RCLike.charZero_rclike
Nat.cast_nonneg
mul_le' πŸ“–mathematicalβ€”Real
Real.instLE
AddGroupSeminorm.toFun
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
toAddGroupSeminorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Real.instMul
β€”β€”
ne_zero_iff πŸ“–β€”β€”β€”β€”β€”
ringSeminormClass πŸ“–mathematicalβ€”RingSeminormClass
RingSeminorm
NonUnitalRing.toNonUnitalNonAssocRing
Real
Real.semiring
Real.partialOrder
funLike
β€”AddGroupSeminorm.add_le'
AddGroupSeminorm.map_zero'
AddGroupSeminorm.neg'
mul_le'
seminorm_one_eq_one_iff_ne_zero πŸ“–β€”Real
Real.instLE
DFunLike.coe
RingSeminorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
funLike
Ring.toNonUnitalRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
β€”β€”ne_zero_iff
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
LE.le.eq_or_lt'
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
ringSeminormClass
ext
LE.le.antisymm'
mul_one
MulZeroClass.mul_zero
SubmultiplicativeHomClass.map_mul_le_mul
RingSeminormClass.toSubmultiplicativeHomClass
LE.le.antisymm
le_mul_iff_one_le_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
one_mul
toFun_eq_coe πŸ“–mathematicalβ€”DFunLike.coe
AddGroupSeminorm
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
Real
AddGroupSeminorm.funLike
toAddGroupSeminorm
RingSeminorm
funLike
β€”β€”

SeminormedRing

Definitions

NameCategoryTheorems
toRingSeminorm πŸ“–CompOp
1 mathmath: toRingSeminorm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toRingSeminorm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingSeminorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Real
RingSeminorm.funLike
NonUnitalSeminormedRing.toNonUnitalRing
toNonUnitalSeminormedRing
toRingSeminorm
Norm.norm
toNorm
β€”β€”

(root)

Definitions

NameCategoryTheorems
MulRingNorm πŸ“–CompData
7 mathmath: MulRingNorm.ext_iff, MulRingNorm.mulRingNormClass, MulRingNorm.mulRingNormEquivAbsoluteValue_symm_apply, MulRingNorm.toFun_eq_coe, MulRingNorm.mulRingNormEquivAbsoluteValue_apply, MulRingNorm.isPowMul, MulRingNorm.apply_one
MulRingSeminorm πŸ“–CompData
4 mathmath: MulRingSeminorm.apply_one, MulRingSeminorm.mulRingSeminormClass, MulRingSeminorm.toFun_eq_coe, MulRingSeminorm.ext_iff
RingNorm πŸ“–CompData
6 mathmath: RingNorm.apply_one, RingNorm.toFun_eq_coe, RingNorm.ringNormClass, RingNorm.ext_iff, NormedRing.toRingNorm_apply, seminormFromConstRingNormOfField_def
RingSeminorm πŸ“–CompData
11 mathmath: RingSeminorm.ringSeminormClass, smoothingFun_le, RingSeminorm.eq_zero_iff, RingSeminorm.toFun_eq_coe, smoothingFun_le_self, zero_mem_lowerBounds_smoothingSeminormSeq_range, smoothingSeminormSeq_bddBelow, RingSeminorm.ext_iff, RingSeminorm.apply_one, SeminormedRing.toRingSeminorm_apply, seminormFromConst_seq_def
normRingNorm πŸ“–CompOp
1 mathmath: normRingNorm_toFun
normRingSeminorm πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_pow_le_pow πŸ“–mathematicalβ€”Real
Real.instLE
DFunLike.coe
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Real.instMonoid
β€”pow_one
pow_succ
le_imp_le_of_le_of_le
SubmultiplicativeHomClass.map_mul_le_mul
RingSeminormClass.toSubmultiplicativeHomClass
le_refl
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
map_pow_le_pow' πŸ“–mathematicalReal
Real.instLE
DFunLike.coe
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Real.instMonoid
β€”pow_zero
map_pow_le_pow
normRingNorm_toFun πŸ“–mathematicalβ€”AddGroupSeminorm.toFun
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
RingSeminorm.toAddGroupSeminorm
RingNorm.toRingSeminorm
normRingNorm
Norm.norm
SeminormedAddGroup.toNorm
NormedAddGroup.toSeminormedAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
β€”β€”

---

← Back to Index