Documentation Verification Report

SpectralNorm

πŸ“ Source: Mathlib/Analysis/Normed/Unbundled/SpectralNorm.lean

Statistics

MetricCount
DefinitionsalgNormFromConst, spectralAlgNorm, spectralAlgNorm_of_finiteDimensional_normal, spectralMulAlgNorm, spectralNorm, metricSpace, nontriviallyNormedField, normedAddCommGroup, normedField, normedSpace, seminormedAddCommGroup, uniformSpace, spectralValue, spectralValueTerms
14
TheoremsalgNormFromConst_def, eq_zero_of_map_spectralNorm_eq_zero, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, isNonarchimedean_spectralNorm, isNonarchimedean_spectralNorm_of_finiteDimensional_normal, isPowMul_spectralNorm, isPowMul_spectralNorm_of_finiteDimensional_normal, max_norm_root_eq_spectralValue, norm_le_spectralNorm, norm_root_le_spectralValue, spectralAlgNorm_def, spectralAlgNorm_extends, spectralAlgNorm_isPowMul, spectralAlgNorm_mul, spectralAlgNorm_of_finiteDimensional_normal_def, spectralAlgNorm_one, spectralMulAlgNorm_def, completeSpace, eq_of_normalClosure, eq_of_normalClosure', eq_of_tower, spectralMulAlgNorm_eq_of_mem_roots, spectralNorm_eq_norm_coeff_zero_rpow, spectralNorm_pow_natDegree_eq_prod_roots, spectralNorm_eq_iSup_of_finiteDimensional_normal, spectralNorm_eq_invariantExtension, spectralNorm_eq_of_equiv, spectralNorm_extends, spectralNorm_extends_of_finiteDimensional, spectralNorm_mul, spectralNorm_neg, spectralNorm_nonneg, spectralNorm_one, spectralNorm_smul, spectralNorm_unique, spectralNorm_unique_field_norm_ext, spectralNorm_unique_of_finiteDimensional_normal, spectralNorm_zero, spectralNorm_zero_lt, spectralValueTerms_bddAbove, spectralValueTerms_finite_range, spectralValueTerms_nonneg, spectralValueTerms_of_lt_natDegree, spectralValueTerms_of_natDegree_le, spectralValue_X_pow, spectralValue_X_sub_C, spectralValue_eq_zero_iff, spectralValue_le_one_iff, spectralValue_nonneg
49
Total63

(root)

Definitions

NameCategoryTheorems
algNormFromConst πŸ“–CompOp
1 mathmath: algNormFromConst_def
spectralAlgNorm πŸ“–CompOp
6 mathmath: spectralAlgNorm_def, spectralAlgNorm_mul, spectralNorm_unique, spectralAlgNorm_one, spectralAlgNorm_extends, spectralAlgNorm_isPowMul
spectralAlgNorm_of_finiteDimensional_normal πŸ“–CompOp
1 mathmath: spectralAlgNorm_of_finiteDimensional_normal_def
spectralMulAlgNorm πŸ“–CompOp
3 mathmath: spectralMulAlgNorm_def, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, spectralNorm.spectralMulAlgNorm_eq_of_mem_roots
spectralNorm πŸ“–CompOp
27 mathmath: spectralNorm_neg, isPowMul_spectralNorm_of_finiteDimensional_normal, spectralAlgNorm_def, spectralNorm_eq_iSup_of_finiteDimensional_normal, isPowMul_spectralNorm, spectralNorm_eq_invariantExtension, spectralMulAlgNorm_def, spectralNorm_mul, PadicAlgCl.spectralNorm_eq, isNonarchimedean_spectralNorm, spectralNorm_one, spectralNorm_smul, spectralNorm_nonneg, spectralNorm_extends, norm_le_spectralNorm, spectralNorm.eq_of_normalClosure, spectralNorm.eq_of_normalClosure', spectralNorm.spectralNorm_eq_norm_coeff_zero_rpow, isNonarchimedean_spectralNorm_of_finiteDimensional_normal, spectralAlgNorm_of_finiteDimensional_normal_def, spectralNorm.eq_of_tower, spectralNorm_extends_of_finiteDimensional, spectralNorm_unique_field_norm_ext, spectralNorm_zero_lt, spectralNorm_zero, spectralNorm_eq_of_equiv, spectralNorm_unique_of_finiteDimensional_normal
spectralValue πŸ“–CompOp
7 mathmath: norm_root_le_spectralValue, spectralValue_X_sub_C, max_norm_root_eq_spectralValue, spectralValue_le_one_iff, spectralValue_nonneg, spectralValue_eq_zero_iff, spectralValue_X_pow
spectralValueTerms πŸ“–CompOp
5 mathmath: spectralValueTerms_bddAbove, spectralValueTerms_finite_range, spectralValueTerms_nonneg, spectralValueTerms_of_natDegree_le, spectralValueTerms_of_lt_natDegree

Theorems

NameKindAssumesProvesValidatesDepends On
algNormFromConst_def πŸ“–mathematicalReal
Real.instLE
DFunLike.coe
RingSeminorm
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Field.toDivisionRing
RingSeminorm.funLike
NonUnitalCommRing.toNonUnitalRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingNorm.toRingSeminorm
AlgebraNorm.toRingNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
spectralAlgNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
AlgebraNorm
AlgebraNorm.instFunLikeReal
algNormFromConst
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
seminormFromConst
ne_of_gt
Real.instPreorder
Real.instZero
spectralNorm_zero_lt
Algebra.IsAlgebraic.isAlgebraic
NormedField.toField
isPowMul_spectralNorm
β€”β€”
eq_zero_of_map_spectralNorm_eq_zero πŸ“–mathematicalspectralNorm
Real
Real.instZero
IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DivisionRing.toRing
Field.toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”ne_of_gt
spectralNorm_zero_lt
instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure πŸ“–mathematicalβ€”SeminormClass
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
AlgebraicClosure
IntermediateField
NormedField.toField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.normalClosure
DivisionRing.toRing
Field.toDivisionRing
CommRing.toCommSemiring
SeminormedCommRing.toCommRing
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
SeminormedCommRing.toSeminormedRing
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AlgebraNorm.instFunLikeReal
β€”AlgebraNormClass.toSeminormClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
AlgebraNorm.algebraNormClass
isNonarchimedean_spectralNorm πŸ“–mathematicalβ€”IsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
spectralNorm
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
IsScalarTower.right
spectralNorm.eq_of_normalClosure
IntermediateField.AdjoinPair.algebraMap_gen₁
IntermediateField.AdjoinPair.algebraMap_genβ‚‚
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
isNonarchimedean_spectralNorm_of_finiteDimensional_normal
normalClosure.is_finiteDimensional
IntermediateField.finiteDimensional_adjoin_pair
IsAlgebraic.isIntegral
Algebra.IsAlgebraic.isAlgebraic
normalClosure.normal
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
IntermediateField.isAlgebraic_tower_bot
isNonarchimedean_spectralNorm_of_finiteDimensional_normal πŸ“–mathematicalβ€”IsNonarchimedean
Real
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
spectralNorm
β€”spectralNorm_eq_invariantExtension
IsUltrametricDist.isNonarchimedean_invariantExtension
isPowMul_spectralNorm πŸ“–mathematicalβ€”IsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
spectralNorm
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
IsScalarTower.right
spectralNorm.eq_of_normalClosure
IntermediateField.AdjoinSimple.algebraMap_gen
SubgroupClass.toSubmonoidClass
SubfieldClass.toSubgroupClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isPowMul_spectralNorm_of_finiteDimensional_normal
normalClosure.is_finiteDimensional
IntermediateField.adjoin.finiteDimensional
IsAlgebraic.isIntegral
Algebra.IsAlgebraic.isAlgebraic
normalClosure.normal
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
IntermediateField.isAlgebraic_tower_bot
isPowMul_spectralNorm_of_finiteDimensional_normal πŸ“–mathematicalβ€”IsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
spectralNorm
β€”spectralNorm_eq_invariantExtension
IsUltrametricDist.isPowMul_invariantExtension
max_norm_root_eq_spectralValue πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsNonarchimedean
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.mapAlg
Multiset.prod
CommRing.toCommMonoid
Polynomial.commRing
Multiset.map
Polynomial.instSub
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
iSup
Real.instSupSet
Multiset
Multiset.instMembership
Multiset.decidableMem
Real.instZero
spectralValue
SeminormedCommRing.toSeminormedRing
β€”Real.iSup_nonneg
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
RingNormClass.toRingSeminormClass
AlgebraNormClass.toRingNormClass
AlgebraNorm.algebraNormClass
le_refl
le_antisymm
ciSup_le
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.aeval_root_of_mapAlg_eq_multiset_prod_X_sub_C
norm_root_le_spectralValue
Polynomial.monic_of_monic_mapAlg
instFaithfulSMul_1
DivisionRing.isSimpleRing
Polynomial.monic_multisetProd_X_sub_C
spectralValue_nonneg
spectralValueTerms_of_lt_natDegree
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.cast_lt
Real.instZeroLEOneClass
RCLike.charZero_rclike
Real.rpow_le_rpow_iff
Real.rpow_nonneg
norm_nonneg
Real.rpow_mul
one_div_mul_cancel
ne_of_gt
Real.rpow_one
Nat.cast_sub
le_of_lt
Real.rpow_natCast
Polynomial.natDegree_map
Polynomial.mapAlg_eq_map
Polynomial.natDegree_multiset_prod_X_sub_C_eq_card
AlgebraNorm.extends_norm
Polynomial.coeff_map
Multiset.prod_X_sub_C_coeff
neg_one_pow_eq_or
one_mul
neg_mul
AddGroupSeminormClass.map_neg_eq_map
SeminormClass.toAddGroupSeminormClass
AlgebraNormClass.toSeminormClass
Multiset.esymm.eq_1
IsNonarchimedean.multiset_powerset_image_add
Real.instIsStrictOrderedRing
le_trans
Multiset.le_prod_of_submultiplicative_of_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_eq
SubmultiplicativeHomClass.map_mul_le_mul
RingSeminormClass.toSubmultiplicativeHomClass
lt_of_le_of_lt
zero_le
Nat.instCanonicallyOrderedAdd
Multiset.card_pos_iff_exists_mem
Finset.card_pos
Multiset.mem_toFinset
Multiset.toFinset_nonempty
Multiset.exists_max_image
Multiset.card_map
Multiset.mem_map
Multiset.prod_le_pow_card
NNReal.mulLeftMono
Multiset.map_congr
NNReal.coe_multiset_prod
Multiset.map_map
Set.mem_range
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
le_ciSup
norm_le_spectralNorm πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsNonarchimedean
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAlgebraic
NormedField.toField
Real.instLE
spectralNorm
β€”norm_root_le_spectralValue
minpoly.monic
IsAlgebraic.isIntegral
minpoly.aeval
norm_root_le_spectralValue πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsNonarchimedean
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.Monic
NormedField.toField
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Real.instLE
spectralValue
SeminormedCommRing.toSeminormedRing
β€”spectralValue_nonneg
Real.rpow_natCast
Real.rpow_mul
norm_nonneg
mul_comm
Nat.cast_sub
le_of_lt
one_div
Real.pow_rpow_inv_natCast
ne_of_gt
tsub_pos_of_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Set.Finite.csSup_lt_iff
spectralValueTerms_finite_range
Set.range_nonempty
not_le
iSup.eq_1
spectralValue.eq_1
Real.rpow_lt_rpow
Real.rpow_nonneg
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Polynomial.natDegree_pos_of_monic_of_aeval_eq_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
instFaithfulSMul_1
DivisionRing.isSimpleRing
pow_zero
SeminormClass.map_smul_eq_mul
AlgebraNormClass.toSeminormClass
AlgebraNorm.algebraNormClass
LE.le.trans_lt
mul_le_of_le_one_right
IsOrderedRing.toPosMulMono
IsPowMul.map_one_le_one
pos_iff_ne_zero
pow_add
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
lt_of_le_of_ne'
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
RingNormClass.toRingSeminormClass
AlgebraNormClass.toRingNormClass
IsNonarchimedean.finset_image_add
AddGroupSeminormClass.toZeroHomClass
SeminormClass.toAddGroupSeminormClass
Finset.mem_range
zero_lt_iff
Finset.nonempty_range_iff
lt_of_le_of_lt
Polynomial.aeval_eq_sum_range
Finset.sum_range_succ
add_comm
Polynomial.Monic.coeff_natDegree
one_smul
max_eq_left_of_lt
IsNonarchimedean.add_eq_max_of_ne
map_zero
spectralAlgNorm_def πŸ“–mathematicalβ€”DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm
spectralNorm
β€”β€”
spectralAlgNorm_extends πŸ“–mathematicalβ€”DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
β€”spectralNorm_extends
spectralAlgNorm_isPowMul πŸ“–mathematicalβ€”IsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm
β€”isPowMul_spectralNorm
spectralAlgNorm_mul πŸ“–mathematicalβ€”DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real.instMul
β€”MulZeroClass.zero_mul
map_zero
AddGroupSeminormClass.toZeroHomClass
SeminormClass.toAddGroupSeminormClass
AlgebraNormClass.toSeminormClass
AlgebraNorm.algebraNormClass
ne_of_gt
spectralNorm_zero_lt
Algebra.IsAlgebraic.isAlgebraic
le_of_eq
spectralAlgNorm_one
seminormFromConst_isPowMul
isPowMul_spectralNorm
spectralNorm_unique
seminormFromConst_const_mul
spectralAlgNorm_of_finiteDimensional_normal_def πŸ“–mathematicalβ€”DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm_of_finiteDimensional_normal
spectralNorm
β€”β€”
spectralAlgNorm_one πŸ“–mathematicalβ€”DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instOne
β€”spectralNorm_one
spectralMulAlgNorm_def πŸ“–mathematicalβ€”DFunLike.coe
MulAlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DivisionRing.toRing
Field.toDivisionRing
Real
MulAlgebraNorm.instFunLikeReal
spectralMulAlgNorm
spectralNorm
β€”β€”
spectralNorm_eq_iSup_of_finiteDimensional_normal πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsNonarchimedean
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
spectralNorm
iSup
AlgEquiv
Real.instSupSet
AlgEquiv.instFunLike
β€”RingHom.map_one
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
le_antisymm
Normal.splits
Polynomial.splits_iff_exists_multiset
minpoly.monic
Normal.isIntegral
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
max_norm_root_eq_spectralValue
one_mul
Polynomial.leadingCoeff_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
ciSup_le
Nontrivial.to_nonempty
minpoly.exists_algEquiv_of_root'
Algebra.IsAlgebraic.isAlgebraic
Normal.toIsAlgebraic
Polynomial.aeval_root_of_mapAlg_eq_multiset_prod_X_sub_C
le_ciSup
Finite.bddAbove_range
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Real.iSup_nonneg
NonnegHomClass.apply_nonneg
RingSeminormClass.toNonnegHomClass
Real.instIsOrderedAddMonoid
RingNormClass.toRingSeminormClass
AlgebraNormClass.toRingNormClass
AlgebraNorm.algebraNormClass
norm_root_le_spectralValue
minpoly.aeval_algHom
spectralNorm_eq_invariantExtension πŸ“–mathematicalβ€”spectralNorm
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsUltrametricDist.invariantExtension
β€”IsUltrametricDist.isNonarchimedean_norm
exists_nonarchimedean_pow_mul_seminorm_of_finiteDimensional
spectralNorm_eq_iSup_of_finiteDimensional_normal
spectralNorm_eq_of_equiv πŸ“–mathematicalβ€”spectralNorm
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”minpoly.algEquiv_eq
spectralNorm_extends πŸ“–mathematicalβ€”spectralNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
β€”RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
spectralValue_X_sub_C
spectralNorm_extends_of_finiteDimensional πŸ“–mathematicalβ€”spectralNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
β€”spectralNorm_eq_invariantExtension
IsUltrametricDist.invariantExtension_extends
spectralNorm_mul πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instLE
spectralNorm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Real.instMul
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
IsScalarTower.right
spectralNorm.eq_of_normalClosure
IntermediateField.AdjoinPair.algebraMap_gen₁
IntermediateField.AdjoinPair.algebraMap_genβ‚‚
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
normalClosure.is_finiteDimensional
IntermediateField.finiteDimensional_adjoin_pair
IsAlgebraic.isIntegral
normalClosure.normal
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
spectralAlgNorm_of_finiteDimensional_normal_def
SubmultiplicativeHomClass.map_mul_le_mul
RingSeminormClass.toSubmultiplicativeHomClass
RingNormClass.toRingSeminormClass
AlgebraNormClass.toRingNormClass
AlgebraNorm.algebraNormClass
spectralNorm_neg πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DivisionRing.toRing
Field.toDivisionRing
spectralNorm
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
SubringClass.toNegMemClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
IsScalarTower.right
spectralNorm.eq_of_normalClosure
IntermediateField.AdjoinSimple.algebraMap_gen
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
normalClosure.is_finiteDimensional
IntermediateField.adjoin.finiteDimensional
IsAlgebraic.isIntegral
normalClosure.normal
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
spectralAlgNorm_of_finiteDimensional_normal_def
AddGroupSeminormClass.map_neg_eq_map
SeminormClass.toAddGroupSeminormClass
instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure
spectralNorm_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
spectralNorm
β€”le_ciSup_of_le
spectralValueTerms_bddAbove
spectralValueTerms_nonneg
spectralNorm_one πŸ“–mathematicalβ€”spectralNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instOne
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
spectralNorm_extends
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
spectralNorm_smul πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DivisionRing.toRing
Field.toDivisionRing
spectralNorm
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Real
Real.instMul
NNReal.toReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
IntermediateField.isScalarTower
Algebra.algebraMap_eq_smul_one
smul_assoc
normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure
spectralNorm.eq_of_normalClosure
IntermediateField.AdjoinSimple.algebraMap_gen
normalClosure.is_finiteDimensional
IntermediateField.adjoin.finiteDimensional
IsAlgebraic.isIntegral
normalClosure.normal
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
spectralAlgNorm_of_finiteDimensional_normal_def
SeminormClass.map_smul_eq_mul
instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure
spectralNorm_unique πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
spectralAlgNormβ€”eq_of_powMul_faithful
spectralAlgNorm_isPowMul
IsScalarTower.left
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
spectralNorm_zero
SubadditiveHomClass.map_add_le_add
AddGroupSeminormClass.toSubadditiveHomClass
SeminormClass.toAddGroupSeminormClass
AlgebraNormClass.toSeminormClass
AlgebraNorm.algebraNormClass
map_neg
AddGroupSeminormClass.map_neg_eq_map
SubmultiplicativeHomClass.map_mul_le_mul
RingSeminormClass.toSubmultiplicativeHomClass
RingNormClass.toRingSeminormClass
AlgebraNormClass.toRingNormClass
RingNormClass.toAddGroupNormClass
SubringClass.toSubsemiringClass
AddGroupSeminormClass.toZeroHomClass
RingHom.map_neg
SemigroupAction.mul_smul
one_smul
smul_zero
smul_add
add_smul
zero_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
IntermediateField.instSMulMemClass
IntermediateField.coe_smul
SeminormClass.map_smul_eq_mul
le_refl
LinearMap.continuous_of_finiteDimensional
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IntermediateField.adjoin.finiteDimensional
IsAlgebraic.isIntegral
Algebra.IsAlgebraic.isAlgebraic
IsBoundedLinearMap.bound
ContinuousLinearMap.isBoundedLinearMap
IntermediateField.algebra_adjoin_le_adjoin
spectralNorm_unique_field_norm_ext πŸ“–mathematicalDFunLike.coe
AbsoluteValue
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Real.semiring
Real.partialOrder
AbsoluteValue.funLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.instFunLike
algebraMap
Norm.norm
NormedField.toNorm
spectralNormβ€”IsLocalRing.toNontrivial
Field.instIsLocalRing
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MulRingSeminormClass.toMonoidWithZeroHomClass
MulRingSeminorm.mulRingSeminormClass
MulRingNorm.eq_zero_of_map_eq_zero'
Algebra.smul_def
MulRingNorm.isPowMul
spectralNorm_unique
spectralAlgNorm_def
spectralNorm_unique_of_finiteDimensional_normal πŸ“–mathematicalIsPowMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DivisionRing.toRing
Field.toDivisionRing
Real
AlgebraNorm.instFunLikeReal
IsNonarchimedean
Real.linearOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
RingHom.instFunLike
algebraMap
NNReal.toReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
AlgEquiv
AlgEquiv.instFunLike
spectralNormβ€”ciSup_const
iSup_congr
spectralNorm_eq_iSup_of_finiteDimensional_normal
spectralNorm_zero πŸ“–mathematicalβ€”spectralNorm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Real
Real.instZero
β€”minpoly.zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
pow_one
spectralValue_X_pow
spectralNorm_zero_lt πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DivisionRing.toRing
Field.toDivisionRing
Real
Real.instLT
Real.instZero
spectralNorm
β€”lt_of_le_of_ne
spectralNorm_nonneg
spectralNorm.eq_1
spectralValue_eq_zero_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.monic
IsAlgebraic.isIntegral
minpoly.coeff_zero_ne_zero
instIsDomain
Polynomial.coeff_X_pow
ne_of_lt
minpoly.natDegree_pos
spectralValueTerms_bddAbove πŸ“–mathematicalβ€”BddAbove
Real
Real.instLE
Set.range
spectralValueTerms
β€”Set.Finite.bddAbove
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
spectralValueTerms_finite_range
spectralValueTerms_finite_range πŸ“–mathematicalβ€”Set.Finite
Real
Set.range
spectralValueTerms
β€”Set.Finite.subset
Set.Finite.union
Set.finite_singleton
Set.Finite.image
Set.finite_Iio
Set.image_congr
one_div
spectralValueTerms_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
spectralValueTerms
β€”Real.rpow_nonneg
norm_nonneg
le_refl
spectralValueTerms_of_lt_natDegree πŸ“–mathematicalPolynomial.natDegree
Ring.toSemiring
SeminormedRing.toRing
spectralValueTerms
Real
Real.instPow
Norm.norm
SeminormedRing.toNorm
Polynomial.coeff
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instSub
Real.instNatCast
β€”one_div
spectralValueTerms_of_natDegree_le πŸ“–mathematicalPolynomial.natDegree
Ring.toSemiring
SeminormedRing.toRing
spectralValueTerms
Real
Real.instZero
β€”not_lt
spectralValue_X_pow πŸ“–mathematicalβ€”spectralValue
Polynomial
Ring.toSemiring
SeminormedRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Real
Real.instZero
β€”spectralValue.eq_1
Polynomial.coeff_X_pow
Polynomial.natDegree_X_pow
Real.rpow_eq_zero_iff_of_nonneg
norm_nonneg
ne_of_lt
norm_zero
one_div
inv_eq_zero
Nat.cast_sub
le_of_lt
Nat.cast_eq_zero
RCLike.charZero_rclike
not_le_of_gt
ciSup_const
spectralValue_X_sub_C πŸ“–mathematicalβ€”spectralValue
Polynomial
Ring.toSemiring
SeminormedRing.toRing
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Norm.norm
SeminormedRing.toNorm
β€”spectralValue.eq_1
Polynomial.natDegree_X_sub_C
Polynomial.coeff_sub
Nat.cast_one
one_div
ciSup_eq_of_forall_le_of_forall_lt_exists_gt
le_refl
norm_nonneg
Nat.cast_zero
sub_zero
Polynomial.coeff_X_zero
Polynomial.coeff_C_zero
zero_sub
norm_neg
inv_one
Real.rpow_one
spectralValue_eq_zero_iff πŸ“–mathematicalPolynomial.Monic
Ring.toSemiring
NormedRing.toRing
spectralValue
NormedRing.toSeminormedRing
Real
Real.instZero
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.natDegree
β€”Polynomial.ext
Polynomial.coeff_X_pow
Polynomial.coeff_natDegree
Eq.le
spectralValue.eq_1
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_sub
le_of_lt
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Real.zero_rpow
ne_of_gt
norm_eq_zero
le_antisymm
Real.rpow_le_rpow_iff
norm_nonneg
le_refl
csSup_le_iff
spectralValueTerms_bddAbove
Set.range_nonempty
iSup.eq_1
Polynomial.coeff_eq_zero_of_natDegree_lt
lt_of_le_of_ne
le_of_not_gt
spectralValue_X_pow
spectralValue_le_one_iff πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
NormedDivisionRing.toDivisionRing
Real
Real.instLE
spectralValue
NormedRing.toSeminormedRing
NormedDivisionRing.toNormedRing
Real.instOne
Norm.norm
NormedDivisionRing.toNorm
Polynomial.coeff
β€”spectralValue.eq_1
lt_trichotomy
Polynomial.coeff_eq_zero_of_natDegree_lt
norm_zero
Real.instZeroLEOneClass
Polynomial.Monic.coeff_natDegree
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
le_refl
LE.le.trans
le_ciSup
spectralValueTerms_bddAbove
Mathlib.Tactic.Contrapose.contrapose₁
spectralValueTerms_of_lt_natDegree
Real.one_lt_rpow
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike
ciSup_le
spectralValueTerms.eq_1
Real.rpow_le_one
norm_nonneg
one_div_nonneg
sub_nonneg
Nat.cast_le
le_of_lt
zero_le_one
spectralValue_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
spectralValue
β€”Real.iSup_nonneg
spectralValueTerms_nonneg

spectralNorm

Definitions

NameCategoryTheorems
metricSpace πŸ“–CompOpβ€”
nontriviallyNormedField πŸ“–CompOpβ€”
normedAddCommGroup πŸ“–CompOpβ€”
normedField πŸ“–CompOpβ€”
normedSpace πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOpβ€”
uniformSpace πŸ“–CompOp
1 mathmath: completeSpace

Theorems

NameKindAssumesProvesValidatesDepends On
completeSpace πŸ“–mathematicalβ€”CompleteSpace
uniformSpace
β€”FiniteDimensional.complete
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SeminormedAddCommGroup.to_isUniformAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
eq_of_normalClosure πŸ“–mathematicalDFunLike.coe
RingHom
IntermediateField
NormedField.toField
SetLike.instMembership
IntermediateField.instSetLike
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IntermediateField.instAlgebraSubtypeMem
Algebra.id
spectralNorm
AlgebraicClosure
IntermediateField.toField
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
IntermediateField.algebra'
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.normalClosure
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
normalClosure.algebra
IsScalarTower.right
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
IsScalarTower.right
eq_of_normalClosure'
eq_of_normalClosure' πŸ“–mathematicalβ€”spectralNorm
AlgebraicClosure
IntermediateField
NormedField.toField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.normalClosure
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
RingHom.instFunLike
algebraMap
normalClosure.algebra
IsScalarTower.right
IntermediateField.instAlgebraSubtypeMem
β€”IsScalarTower.left
AlgebraicClosure.instIsScalarTower
IntermediateField.isScalarTower
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.right
minpoly.algebraMap_eq
normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower_mid'
eq_of_tower πŸ“–mathematicalβ€”spectralNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”minpoly.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
spectralMulAlgNorm_eq_of_mem_roots πŸ“–mathematicalMultiset
Multiset.instMembership
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
NormedField.toField
NontriviallyNormedField.toNormedField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.mapAlg
minpoly
DivisionRing.toRing
Field.toDivisionRing
MulAlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Real
MulAlgebraNorm.instFunLikeReal
spectralMulAlgNorm
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”instIsDomain
Polynomial.mapAlg_eq_map
minpoly.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.aeval_def
Polynomial.eval_map
minpoly.eq_of_root
Algebra.IsAlgebraic.isAlgebraic
spectralNorm_eq_norm_coeff_zero_rpow πŸ“–mathematicalβ€”spectralNorm
NontriviallyNormedField.toNormedField
Real
Real.instPow
Norm.norm
NormedField.toNorm
Polynomial.coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
minpoly
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Polynomial.natDegree
β€”Polynomial.IsSplittingField.IsScalarTower.splits
Polynomial.IsSplittingField.splittingField
Polynomial.IsSplittingField.IsScalarTower.isAlgebraic
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.isSeparable_self
Algebra.IsAlgebraic.trans
IsDomain.to_noZeroDivisors
instIsDomain
one_div
Real.eq_rpow_inv
spectralNorm_nonneg
norm_nonneg
Nat.cast_zero
RCLike.charZero_rclike
LT.lt.ne'
minpoly.natDegree_pos
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Real.rpow_natCast
eq_of_tower
spectralNorm_extends
spectralMulAlgNorm_def
Polynomial.coeff_zero_of_isScalarTower
Polynomial.Splits.coeff_zero_eq_prod_roots_of_monic
minpoly.monic
IsAlgebraic.isIntegral
Algebra.IsAlgebraic.isAlgebraic
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MulRingSeminormClass.toMonoidWithZeroHomClass
MulRingNormClass.toMulRingSeminormClass
MulAlgebraNormClass.toMulRingNormClass
MulAlgebraNorm.mulAlgebraNormClass
map_pow
AddGroupSeminormClass.map_neg_eq_map
SeminormClass.toAddGroupSeminormClass
MulAlgebraNormClass.toSeminormClass
map_one
MonoidHomClass.toOneHomClass
one_pow
one_mul
spectralNorm_pow_natDegree_eq_prod_roots
spectralNorm_pow_natDegree_eq_prod_roots πŸ“–mathematicalβ€”Real
Monoid.toNatPow
Real.instMonoid
DFunLike.coe
MulAlgebraNorm
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DivisionRing.toRing
Field.toDivisionRing
MulAlgebraNorm.instFunLikeReal
spectralMulAlgNorm
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Polynomial.natDegree
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
minpoly
Multiset.prod
CommRing.toCommMonoid
Polynomial.roots
instIsDomain
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.mapAlg
β€”instIsDomain
Polynomial.mapAlg_eq_map
Polynomial.natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.splits_iff_card_roots
Polynomial.IsSplittingField.IsScalarTower.splits
map_multiset_prod
MonoidWithZeroHomClass.toMonoidHomClass
MulRingSeminormClass.toMonoidWithZeroHomClass
MulRingNormClass.toMulRingSeminormClass
MulAlgebraNormClass.toMulRingNormClass
MulAlgebraNorm.mulAlgebraNormClass
Multiset.prod_replicate
Multiset.ext'
Multiset.count_replicate
Multiset.mem_map
spectralMulAlgNorm_eq_of_mem_roots
Multiset.count_eq_card
Multiset.card_map
Multiset.count_eq_zero_of_notMem

---

← Back to Index