Documentation Verification Report

Gronwall

πŸ“ Source: Mathlib/Analysis/ODE/Gronwall.lean

Statistics

MetricCount
DefinitionsgronwallBound
1
TheoremsODE_solution_unique, ODE_solution_unique_of_eventually, ODE_solution_unique_of_mem_Icc, ODE_solution_unique_of_mem_Icc_left, ODE_solution_unique_of_mem_Icc_right, ODE_solution_unique_of_mem_Ioo, ODE_solution_unique_univ, dist_le_of_approx_trajectories_ODE, dist_le_of_approx_trajectories_ODE_of_mem, dist_le_of_trajectories_ODE, dist_le_of_trajectories_ODE_of_mem, eq_zero_of_abs_deriv_le_mul_abs_self_of_eq_zero_right, gronwallBound_K0, gronwallBound_continuous_Ξ΅, gronwallBound_mono, gronwallBound_of_K_ne_0, gronwallBound_x0, gronwallBound_Ξ΅0, gronwallBound_Ξ΅0_Ξ΄0, hasDerivAt_gronwallBound, hasDerivAt_gronwallBound_shift, le_gronwallBound_of_liminf_deriv_right_le, norm_le_gronwallBound_of_norm_deriv_right_le
23
Total24

(root)

Definitions

NameCategoryTheorems
gronwallBound πŸ“–CompOp
13 mathmath: gronwallBound_of_K_ne_0, dist_le_of_approx_trajectories_ODE, gronwallBound_Ξ΅0_Ξ΄0, hasDerivAt_gronwallBound_shift, gronwallBound_K0, gronwallBound_x0, gronwallBound_continuous_Ξ΅, le_gronwallBound_of_liminf_deriv_right_le, norm_le_gronwallBound_of_norm_deriv_right_le, dist_le_of_approx_trajectories_ODE_of_mem, hasDerivAt_gronwallBound, gronwallBound_mono, gronwallBound_Ξ΅0

Theorems

NameKindAssumesProvesValidatesDepends On
ODE_solution_unique πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Set.EqOnβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ODE_solution_unique_of_mem_Icc_right
LipschitzWith.lipschitzOnWith
ODE_solution_unique_of_eventually πŸ“–mathematicalFilter.Eventually
Real
LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
HasDerivAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set
Set.instMembership
Filter.EventuallyEqβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Metric.eventually_nhds_iff_ball
Filter.Eventually.and
Filter.eventuallyEq_iff_exists_mem
Metric.ball_mem_nhds
Real.ball_eq_Ioo
ODE_solution_unique_of_mem_Ioo
Metric.mem_ball_self
ODE_solution_unique_of_mem_Icc πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
HasDerivAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.EqOnβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Set.Icc_union_Icc_eq_Icc
le_of_lt
Set.EqOn.union
Set.Ioc_subset_Ioo_right
ODE_solution_unique_of_mem_Icc_left
ContinuousOn.mono
Set.Icc_subset_Icc_right
HasDerivAt.hasDerivWithinAt
Set.Ico_subset_Ioo_left
ODE_solution_unique_of_mem_Icc_right
Set.Icc_subset_Icc_left
ODE_solution_unique_of_mem_Icc_left πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Iic
Set
Set.instMembership
Set.EqOnβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
one_mul
LipschitzWith.comp_lipschitzOnWith
LipschitzWith.neg
LipschitzWith.id
le_neg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
neg_le
lt_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Set.mem_Iic
neg_le_neg
ODE_solution_unique_of_mem_Icc_right
ContinuousOn.comp
continuousOn_neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
neg_smul
one_smul
HasFDerivWithinAt.comp_hasDerivWithinAt
HasDerivAt.hasDerivWithinAt
hasDerivAt_neg
neg_neg
Set.image_neg_eq_neg
Set.neg_Icc
Set.eqOn_comp_right_iff
ODE_solution_unique_of_mem_Icc_right πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Set
Set.instMembership
Set.EqOnβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist_le_of_trajectories_ODE_of_mem
dist_le_zero
MulZeroClass.zero_mul
ODE_solution_unique_of_mem_Ioo πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
HasDerivAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
IsBoundedSMul.continuousSMul
Real.pseudoMetricSpace
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.EqOnβ€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
lt_or_ge
lt_of_lt_of_le
lt_of_le_of_lt
ODE_solution_unique_of_mem_Icc_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ioc_subset_Icc_self
HasDerivAt.continuousOn
HasDerivAt.hasDerivWithinAt
le_rfl
le_of_lt
ODE_solution_unique_of_mem_Icc_right
Set.Ico_subset_Icc_self
ODE_solution_unique_univ πŸ“–β€”LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
IsBoundedSMul.continuousSMul
Real.pseudoMetricSpace
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set
Set.instMembership
β€”β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Set.mem_Ioo
LT.lt.trans_le
sub_one_lt
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LE.le.trans
min_le_left
neg_abs_le
LE.le.trans_lt
le_abs_self
le_max_left
lt_add_one
min_le_right
le_max_right
ODE_solution_unique_of_mem_Ioo
dist_le_of_approx_trajectories_ODE πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
gronwallBound
NNReal.toReal
Real.instAdd
Real.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist_le_of_approx_trajectories_ODE_of_mem
LipschitzWith.lipschitzOnWith
dist_le_of_approx_trajectories_ODE_of_mem πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
gronwallBound
NNReal.toReal
Real.instAdd
Real.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist_eq_norm
HasDerivWithinAt.sub
norm_le_gronwallBound_of_norm_deriv_right_le
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
dist_triangle4_right
LipschitzOnWith.dist_le_mul
LE.le.trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
add_comm
le_refl
dist_le_of_trajectories_ODE πŸ“–mathematicalLipschitzWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Set
Set.instMembership
Real.instMul
Real.exp
NNReal.toReal
Real.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist_le_of_trajectories_ODE_of_mem
LipschitzWith.lipschitzOnWith
dist_le_of_trajectories_ODE_of_mem πŸ“–mathematicalLipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Set
Set.instMembership
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
Real.exp
NNReal.toReal
Real.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist_self
le_refl
dist_le_of_approx_trajectories_ODE_of_mem
gronwallBound_Ξ΅0
zero_add
eq_zero_of_abs_deriv_le_mul_abs_self_of_eq_zero_right πŸ“–β€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Real.instMul
Set
Set.instMembership
β€”β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
norm_le_zero_iff
norm_le_gronwallBound_of_norm_deriv_right_le
norm_zero
add_zero
gronwallBound_Ξ΅0_Ξ΄0
gronwallBound_K0 πŸ“–mathematicalβ€”gronwallBound
Real
Real.instZero
Real.instAdd
Real.instMul
β€”β€”
gronwallBound_continuous_Ξ΅ πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
gronwallBound
β€”gronwallBound_K0
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_const
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
gronwallBound_of_K_ne_0
Continuous.div_const
gronwallBound_mono πŸ“–mathematicalReal
Real.instLE
Real.instZero
Monotone
Real.instPreorder
gronwallBound
β€”add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
lt_of_le_of_ne'
add_le_add
covariant_swap_add_of_covariant_add
Real.exp_monotone
le_of_lt
sub_le_sub_right
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
gronwallBound_of_K_ne_0 πŸ“–mathematicalβ€”gronwallBound
Real
Real.instAdd
Real.instMul
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instOne
β€”β€”
gronwallBound_x0 πŸ“–mathematicalβ€”gronwallBound
Real
Real.instZero
β€”MulZeroClass.mul_zero
add_zero
Real.exp_zero
mul_one
sub_self
gronwallBound_Ξ΅0 πŸ“–mathematicalβ€”gronwallBound
Real
Real.instZero
Real.instMul
Real.exp
β€”gronwallBound_K0
MulZeroClass.zero_mul
add_zero
Real.exp_zero
mul_one
gronwallBound_of_K_ne_0
zero_div
gronwallBound_Ξ΅0_Ξ΄0 πŸ“–mathematicalβ€”gronwallBound
Real
Real.instZero
β€”gronwallBound_Ξ΅0
MulZeroClass.zero_mul
hasDerivAt_gronwallBound πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
gronwallBound
Real.instAdd
Real.instMul
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
HasDerivAt.congr_simp
gronwallBound_K0
MulZeroClass.zero_mul
zero_add
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_one
HasDerivAt.const_add
HasDerivAt.const_mul
hasDerivAt_id
gronwallBound_of_K_ne_0
mul_add
Distrib.leftDistribClass
mul_assoc
mul_div_cancelβ‚€
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
HasDerivAt.add
HasDerivAt.exp
HasDerivAt.sub_const
hasDerivAt_gronwallBound_shift πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
gronwallBound
Real.instSub
Real.instAdd
Real.instMul
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_one
HasDerivAt.comp
hasDerivAt_gronwallBound
HasDerivAt.sub_const
hasDerivAt_id
le_gronwallBound_of_liminf_deriv_right_le πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Icc
Real.instPreorder
Filter.Frequently
Real.instLT
Real.instMul
Real.instInv
Real.instSub
nhdsWithin
Set.Ioi
Real.instLE
Real.instAdd
Set
Set.instMembership
gronwallBoundβ€”image_le_of_liminf_slope_right_lt_deriv_boundary
sub_self
gronwallBound_x0
hasDerivAt_gronwallBound_shift
lt_imp_lt_of_le_of_le
le_refl
add_lt_add_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ContinuousWithinAt.closure_le
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
closure_Ioi
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
continuousWithinAt_const
Continuous.continuousWithinAt
gronwallBound_continuous_Ξ΅
norm_le_gronwallBound_of_norm_deriv_right_le πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.Icc
Real.instPreorder
HasDerivWithinAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
Set.Ici
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
Real.instAdd
Real.instMul
Set
Set.instMembership
gronwallBound
Real.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
le_gronwallBound_of_liminf_deriv_right_le
Continuous.comp_continuousOn
continuous_norm
HasDerivWithinAt.liminf_right_slope_norm_le

---

← Back to Index