Documentation Verification Report

PSeries

πŸ“ Source: Mathlib/Analysis/PSeries.lean

Statistics

MetricCount
DefinitionsSuccDiffBounded
1
Theoremsle_tsum_condensed, le_tsum_schlomilch, tsum_condensed_le, tsum_schlomilch_le, le_sum_condensed, le_sum_condensed', le_sum_schlomilch, le_sum_schlomilch', sum_condensed_le, sum_condensed_le', sum_schlomilch_le, sum_schlomilch_le', summable_condensed_iff, summable_one_div_rpow, summable_rpow, summable_rpow_inv, summable_schlomilch_iff, not_summable_indicator_one_div_natCast, not_summable_natCast_inv, not_summable_one_div_natCast, summable_abs_int_rpow, summable_nat_pow_inv, summable_nat_rpow, summable_nat_rpow_inv, summable_one_div_int_add_rpow, summable_one_div_int_pow, summable_one_div_nat_add_rpow, summable_one_div_nat_pow, summable_one_div_nat_rpow, tendsto_sum_range_one_div_nat_succ_atTop, sum_Ioc_inv_sq_le_sub, sum_Ioo_inv_sq_le, summable_condensed_iff_of_eventually_nonneg, summable_condensed_iff_of_nonneg, summable_pow_div_add, summable_schlomilch_iff_of_nonneg
36
Total37

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
le_tsum_condensed πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
tsum
instAddCommMonoid
instTopologicalSpace
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Nat.instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
tsum_eq_iSup_nat'
tendsto_pow_atTop_atTop_of_one_lt
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
instArchimedeanNat
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
iSup_le
LE.le.trans
Finset.le_sum_condensed
instIsOrderedAddMonoid
Finset.sum_congr
nsmul_eq_mul
Nat.cast_pow
le_imp_le_of_le_of_le
add_le_add_right
sum_le_tsum
le_refl
le_tsum_schlomilch πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
StrictMono
Nat.instPreorder
tsum
instAddCommMonoid
instTopologicalSpace
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Finset.sum
Finset.range
Distrib.toMul
instSub
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”tsum_eq_iSup_nat'
StrictMono.tendsto_atTop
iSup_le
le_imp_le_of_le_of_le
Finset.le_sum_schlomilch
instIsOrderedAddMonoid
StrictMono.monotone
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
natCast_sub
Finset.sum_congr
nsmul_eq_mul
sum_le_tsum
tsum_condensed_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
tsum
instAddCommMonoid
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
Nat.instMonoid
SummationFilter.unconditional
Distrib.toAdd
β€”Nat.instAtLeastTwoHAddOfNat
tsum_eq_iSup_nat'
Filter.tendsto_atTop_mono
Filter.tendsto_id
two_mul
two_nsmul
iSup_le
le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
smul_le_smul_of_nonneg_left
OrderedSemiring.toPosSMulMonoNat
instIsOrderedRing
sum_le_tsum
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
nsmul_eq_mul
Finset.sum_congr
Nat.cast_pow
Finset.sum_condensed_le
tsum_schlomilch_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
Monotone
Nat.instPreorder
SuccDiffBounded
tsum
instAddCommMonoid
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instSub
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
SummationFilter.unconditional
Distrib.toAdd
β€”tsum_eq_iSup_nat'
Filter.tendsto_atTop_mono
Filter.tendsto_id
iSup_le
le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
instIsOrderedMonoid
sum_le_tsum
Finset.sum_congr
nsmul_eq_mul
natCast_sub
Finset.sum_schlomilch_le

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
le_sum_condensed πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sum
range
Monoid.toNatPow
Nat.instMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
le_sum_condensed'
sum_range_add_sum_Ico
sum_range_succ
sum_range_zero
zero_add
le_sum_condensed' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sum
Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
Monoid.toNatPow
Nat.instMonoid
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”Nat.instAtLeastTwoHAddOfNat
sum_congr
pow_succ
mul_two
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_sum_schlomilch'
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
zero_lt_two
pow_right_monoβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
one_le_two
le_sum_schlomilch πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Monotone
Nat.instPreorder
sum
range
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
le_sum_schlomilch'
sum_range_add_sum_Ico
le_sum_schlomilch' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Monotone
Nat.instPreorder
sum
Ico
Nat.instLocallyFiniteOrder
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”sum_congr
Ico_eq_empty_of_le
mem_Ico
sum_const
Nat.card_Ico
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
sum_range_succ
sum_Ico_consecutive
add_le_add
covariant_swap_add_of_covariant_add
sum_condensed_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sum
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Monoid.toNatPow
Nat.instMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
smul_le_smul_of_nonneg_left
instPosSMulMonoNatOfIsOrderedAddMonoid
sum_condensed_le'
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
sum_range_succ'
sum_congr
pow_succ'
mul_nsmul'
sum_nsmul
pow_zero
one_smul
add_comm
sum_condensed_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sum
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Monoid.toNatPow
Nat.instMonoid
Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.instAtLeastTwoHAddOfNat
sum_congr
pow_succ
mul_two
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sum_schlomilch_le'
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
zero_lt_two
pow_right_monoβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
one_le_two
sum_schlomilch_le πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Monotone
Nat.instPreorder
SuccDiffBounded
sum
range
AddMonoid.toNatSMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Ico
Nat.instLocallyFiniteOrder
β€”sum_range_succ'
add_comm
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
smul_smul
smul_le_smul_of_nonneg_right
instSMulPosMonoNatOfIsOrderedAddMonoid
smul_sum
sum_le_sum
LE.le.trans
nsmul_le_nsmul_right
covariant_swap_add_of_covariant_add
sum_schlomilch_le'
sum_schlomilch_le' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Monotone
Nat.instPreorder
sum
range
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Ico
Nat.instLocallyFiniteOrder
β€”sum_congr
Ico_eq_empty_of_le
LT.lt.trans_le
le_rfl
mem_Ico
sum_const
Nat.card_Ico
sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
sum_range_succ
sum_Ico_consecutive
add_le_add_left
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
add_le_add

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
summable_condensed_iff πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Nat.instMonoid
SummationFilter.unconditional
β€”pow_succ
mul_two
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
two_mul
Nat.instAtLeastTwoHAddOfNat
Nat.cast_add
Nat.cast_pow
instOrderedSub
addLeftReflectLT
summable_schlomilch_iff
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
zero_lt_two
pow_right_strictMonoβ‚€
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
two_ne_zero
summable_one_div_rpow πŸ“–mathematicalβ€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instDiv
instOneNNReal
Real
instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
Real.instLT
Real.instOne
β€”one_div
summable_rpow πŸ“–mathematicalβ€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
Real.instLT
Real.instNeg
Real.instOne
β€”coe_natCast
summable_rpow_inv πŸ“–mathematicalβ€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instInv
Real
instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
Real.instLT
Real.instOne
β€”coe_natCast
summable_schlomilch_iff πŸ“–mathematicalNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
StrictMono
Nat.instPreorder
SuccDiffBounded
Summable
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instSub
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
β€”ENNReal.coe_le_coe
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
ENNReal.instCharZero
eq_top_mono
ENNReal.tsum_schlomilch_le
StrictMono.monotone
ENNReal.sum_ne_top
ENNReal.coe_ne_top
ENNReal.coe_sub
ENNReal.le_tsum_schlomilch

Real

Theorems

NameKindAssumesProvesValidatesDepends On
not_summable_indicator_one_div_natCast πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Set.indicator
instZero
setOf
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instNatCast
SummationFilter.unconditional
β€”summable_nat_add_iff
instIsTopologicalAddGroupReal
Nat.cast_add
Nat.cast_one
Set.indicator_apply
summable_indicator_mod_iff
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
le_refl
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.mono_cast
add_le_add_left
not_summable_one_div_natCast
not_summable_natCast_inv πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
instNatCast
SummationFilter.unconditional
β€”summable_nat_pow_inv
lt_irrefl
pow_one
not_summable_one_div_natCast πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instNatCast
SummationFilter.unconditional
β€”inv_eq_one_div
not_summable_natCast_inv
summable_abs_int_rpow πŸ“–mathematicalReal
instLT
instOne
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
abs
lattice
instAddGroup
instIntCast
instNeg
SummationFilter.unconditional
β€”Summable.of_nat_of_neg
instIsTopologicalAddGroupReal
Int.cast_natCast
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Nat.cast_nonneg
instIsOrderedRing
summable_nat_rpow
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.cast_neg
abs_neg
summable_nat_pow_inv πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
Monoid.toNatPow
instMonoid
instNatCast
SummationFilter.unconditional
β€”IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
RCLike.charZero_rclike
summable_nat_rpow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
instNatCast
SummationFilter.unconditional
instLT
instNeg
instOne
β€”neg_surjective
rpow_neg
instIsOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
summable_nat_rpow_inv πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
instPow
instNatCast
SummationFilter.unconditional
instLT
instOne
β€”le_or_gt
Nat.instAtLeastTwoHAddOfNat
summable_condensed_iff_of_nonneg
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
rpow_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
inv_antiβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
rpow_pos_of_pos
Nat.cast_pos'
NeZero.charZero_one
RCLike.charZero_rclike
rpow_le_rpow
le_of_lt
Nat.mono_cast
Nat.cast_pow
rpow_mul
LT.lt.le
zero_lt_two
mul_comm
rpow_natCast
rpow_one
division_def
rpow_sub
norm_eq_abs
abs_of_pos
rpow_lt_one_iff
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Filter.Eventually.exists
Filter.cofinite_neBot
instInfiniteNat
Filter.Eventually.and
Filter.Tendsto.eventually
Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
gt_mem_nhds
instOrderTopologyReal
zero_lt_one
Filter.eventually_cofinite_ne
inv_lt_oneβ‚€
Nat.cast_pos
instIsOrderedRing
instNontrivial
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
one_lt_rpow_iff_of_pos
LT.lt.not_gt
LT.lt.not_ge
LE.le.trans
zero_le_one
summable_one_div_int_add_rpow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
abs
lattice
instAddGroup
instAdd
instIntCast
SummationFilter.unconditional
instLT
β€”instIsUniformAddGroupReal
instCompleteSpace
abs_neg
neg_add
Int.cast_neg
neg_neg
Int.cast_natCast
summable_one_div_int_pow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instIntCast
SummationFilter.unconditional
β€”summable_one_div_nat_pow
Summable.comp_injective
instIsUniformAddGroupReal
instCompleteSpace
Nat.cast_injective
Int.instCharZero
Summable.of_nat_of_neg
instIsTopologicalAddGroupReal
Summable.congr
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Int.cast_neg
Int.cast_natCast
neg_eq_neg_one_mul
mul_pow
mul_one_div
div_div
summable_one_div_nat_add_rpow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
abs
lattice
instAddGroup
instAdd
instNatCast
SummationFilter.unconditional
instLT
β€”summable_of_isBigO_nat
instCompleteSpace
Asymptotics.isBigO_of_div_tendsto_nhds
Filter.mp_mem
instIsStrictOrderedRing
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_of_abs_lt
Nat.lt_of_ceil_lt
abs_neg
ne_of_gt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Nat.cast_one
rpow_pos_of_pos
abs_pos_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
div_div
mul_one_div
one_div_div
Filter.Tendsto.comp
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_const_nhds
Filter.Tendsto.div_atTop
instOrderTopologyReal
Filter.tendsto_id
Filter.Tendsto.congr'
instNoMaxOrderOfNontrivial
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
add_add_sub_cancel
Filter.Tendsto.atTop_add
ContinuousAt.tendsto
continuousAt_rpow_const
NeZero.charZero_one
RCLike.charZero_rclike
one_rpow
div_rpow
LT.lt.le
neg_lt_iff_pos_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
abs_of_pos
tendsto_natCast_atTop_atTop
instArchimedean
Nat.abs_cast
summable_one_div_nat_pow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
Monoid.toNatPow
instMonoid
instNatCast
SummationFilter.unconditional
β€”one_div
summable_one_div_nat_rpow πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
instNatCast
SummationFilter.unconditional
instLT
β€”one_div
tendsto_sum_range_one_div_nat_succ_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instAdd
instNatCast
Filter.atTop
Nat.instPreorder
instPreorder
β€”not_summable_iff_tendsto_nat_atTop_of_nonneg
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Nat.cast_nonneg'
instZeroLEOneClass
summable_nat_add_iff
instIsTopologicalAddGroupReal
not_summable_one_div_natCast

(root)

Definitions

NameCategoryTheorems
SuccDiffBounded πŸ“–MathDefβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
sum_Ioc_inv_sq_le_sub πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”Nat.le_induction
Finset.sum_congr
Finset.Ioc_self
sub_self
Finset.sum_Ioc_succ_top
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_refl
Nat.cast_add
Nat.cast_one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
LT.lt.trans_le
Ne.bot_lt
Mathlib.Tactic.FieldSimp.le_eq_cancel_le
PosMulStrictMono.toPosMulMono
IsStrictOrderedRing.toPosMulStrictMono
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Nat.cast_pos'
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
add_pos'
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.cons_pos
PosMulReflectLE.toPosMulReflectLT
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.sub_neg_of_lt
sum_Ioo_inv_sq_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finset.Ioo
Nat.instPreorder
Nat.instLocallyFiniteOrder
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_le_sum_of_subset_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
LT.lt.le
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Even.pow_nonneg
AddGroup.existsAddOfLE
even_two_mul
Finset.Icc_add_one_left_eq_Ioc
Nat.instNoMaxOrder
Finset.Ico_add_one_right_eq_Icc
Finset.sum_eq_sum_Ico_succ_bot
LT.lt.trans_le
le_max_left
Nat.cast_one
Finset.sum_congr
le_refl
add_le_add
covariant_swap_add_of_covariant_add
le_rfl
LE.le.trans
sum_Ioc_inv_sq_le_sub
Nat.cast_succ
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
add_le_add_left
div_le_divβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Mathlib.Meta.NormNum.isNat_ofNat
Right.add_pos_of_nonneg_of_pos
Nat.cast_nonneg'
IsStrictOrderedRing.toZeroLEOneClass
pow_one
pow_right_monoβ‚€
IsOrderedRing.toPosMulMono
one_le_two
Nat.instZeroLEOneClass
Nat.instIsOrderedAddMonoid
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
summable_condensed_iff_of_eventually_nonneg πŸ“–mathematicalFilter.EventuallyLE
Real
Real.instLE
Filter.atTop
Nat.instPreorder
Pi.instZero
Real.instZero
Filter.Eventually
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instMonoid
SummationFilter.unconditional
β€”Nat.instAtLeastTwoHAddOfNat
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.EventuallyLE.eq_1
summable_congr_atTop
instIsTopologicalAddGroupReal
tendsto_pow_atTop_atTop_of_one_lt
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Filter.mp_mem
Filter.Tendsto.eventually_ge_atTop
Filter.univ_mem'
max_eq_left
Filter.eventually_ge_atTop
summable_condensed_iff_of_nonneg
Mathlib.Tactic.Bound.le_max_of_le_left_or_le_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
antitoneOn_nat_Ici_of_succ_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_add
max_le
le_max_right
summable_condensed_iff_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instMonoid
SummationFilter.unconditional
β€”pow_succ
mul_two
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
two_mul
Nat.instAtLeastTwoHAddOfNat
Nat.cast_add
Nat.cast_pow
add_sub_cancel_right
summable_schlomilch_iff_of_nonneg
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
zero_lt_two
pow_right_strictMonoβ‚€
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
two_ne_zero
summable_pow_div_add πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Norm.norm
NormedField.toNorm
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
SummationFilter.unconditional
β€”norm_div
Summable.const_div
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
one_div
Nat.cast_add
norm_inv
norm_natCast
RCLike.instNormSMulClassInt
summable_nat_add_iff
instIsTopologicalAddGroupReal
summable_schlomilch_iff_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
StrictMono
Nat.instPreorder
SuccDiffBounded
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instSub
Real.instNatCast
SummationFilter.unconditional
β€”CanLift.prf
Pi.canLift
NNReal.canLift
Nat.cast_le
NNReal.addLeftMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
LT.lt.le
NNReal.coe_sub
NNReal.coe_natCast
NNReal.instIsOrderedRing
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftReflectLT
NNReal.summable_schlomilch_iff

---

← Back to Index