π Source: Mathlib/Analysis/Polynomial/Basic.lean
abs_div_tendsto_atBot_atTop_of_degree_gt
abs_div_tendsto_atTop_atTop_of_degree_gt
abs_div_tendsto_atTop_of_degree_gt
abs_isBoundedUnder_iff
abs_tendsto_atBot
abs_tendsto_atBot_iff
abs_tendsto_atTop
abs_tendsto_atTop_iff
div_tendsto_atBot_leadingCoeff_div_of_degree_eq
div_tendsto_atBot_of_degree_gt
div_tendsto_atBot_of_degree_gt'
div_tendsto_atBot_zero_iff_degree_lt
div_tendsto_atBot_zero_of_degree_lt
div_tendsto_atTop_leadingCoeff_div_of_degree_eq
div_tendsto_atTop_of_degree_gt
div_tendsto_atTop_of_degree_gt'
div_tendsto_atTop_zero_iff_degree_lt
div_tendsto_atTop_zero_of_degree_lt
div_tendsto_leadingCoeff_div_of_degree_eq
div_tendsto_zero_iff_degree_lt
div_tendsto_zero_of_degree_lt
eventually_atBot_not_isRoot
eventually_atTop_not_isRoot
eventually_no_roots
isBigO_atBot_of_degree_le
isBigO_atTop_of_degree_le
isBigO_of_degree_le
isBoundedUnder_abs_atBot_iff
isBoundedUnder_abs_atTop_iff
isEquivalent_atBot_div
isEquivalent_atBot_lead
isEquivalent_atTop_div
isEquivalent_atTop_lead
isLittleO_atBot_of_degree_lt
isLittleO_atTop_of_degree_lt
tendsto_atBot_iff_leadingCoeff_nonpos
tendsto_atBot_of_leadingCoeff_nonpos
tendsto_atTop_iff_leadingCoeff_nonneg
tendsto_atTop_of_leadingCoeff_nonneg
tendsto_nhds_iff
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Filter.atTop
comp_eq_zero_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
coeff_neg
coeff_X_zero
neg_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eval_comp
eval_neg
eval_X
neg_neg
Filter.Tendsto.comp
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Filter.tendsto_abs_atTop_atTop
Filter.tendsto_abs_atBot_atTop
LT.lt.le
Filter.IsBoundedUnder
Preorder.toLE
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
not_le
Filter.not_isBoundedUnder_of_tendsto_atTop
instNoMaxOrderOfNontrivial
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
Nontrivial.to_nonempty
le_total
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
leadingCoeff
Asymptotics.IsEquivalent.tendsto_nhds
Asymptotics.IsEquivalent.symm
natDegree_eq_natDegree
sub_self
zpow_zero
mul_one
T5Space.toT1Space
OrderTopology.t5Space
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
lt_of_le_of_ne
div_ne_zero
ne_zero_of_degree_gt
leadingCoeff_eq_zero
LT.lt.false
div_zero
Asymptotics.IsEquivalent.tendsto_atBot
Filter.Tendsto.const_mul_atTop_of_neg
Filter.tendsto_zpow_atTop_atTop
natDegree_lt_natDegree_iff
Filter.tendsto_neg_atTop_atBot
Asymptotics.IsEquivalent.tendsto_atTop
Filter.Tendsto.const_mul_atTop
div_eq_mul_inv
degree_zero
bot_lt_iff_ne_bot
degree_eq_bot
tendsto_const_mul_zpow_atTop_nhds_iff
degree_lt_degree
zero_add
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
eval_zero
zero_div
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tendsto_zpow_atTop_zero
Filter.Eventually
IsRoot
Filter.atBot_le_cofinite
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
Set.Finite.compl_mem_cofinite
finite_setOf_isRoot
instIsDomain
Filter.atTop_le_cofinite
instNoTopOrderOfNoMaxOrder
Asymptotics.IsBigO
NormedField.toNorm
Asymptotics.IsBigO.comp_tendsto
Asymptotics.isBigO_zero
ne_zero_of_degree_ge_degree
Filter.mem_of_superset
le_iff_lt_or_eq
Asymptotics.isBigO_of_div_tendsto_nhds
Mathlib.Tactic.Contrapose.contraposeβ
Filter.eventually_map
Filter.Eventually.of_forall
le_of_eq
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
eq_C_of_degree_le_zero
eval_C
Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toZPow
natDegree
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
zero_sub
zpow_neg
zpow_natCast
MulZeroClass.zero_mul
sub_zero
Asymptotics.IsEquivalent.trans
Asymptotics.IsEquivalent.div
Filter.EventuallyEq.isEquivalent
Filter.Eventually.mono
Filter.eventually_lt_atBot
zpow_subβ
LT.lt.ne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
comp_neg_X_leadingCoeff_eq
mul_rotate
natDegree_comp
natDegree_neg
natDegree_X
mul_comm
one_mul
mul_neg
Asymptotics.IsEquivalent.comp_tendsto
Filter.eventually_gt_atTop
pow_zero
eval_eq_sum_range
Finset.sum_range_succ
Asymptotics.IsLittleO.add_isEquivalent
Asymptotics.IsLittleO.sum
Asymptotics.IsLittleO.const_mul_left
Asymptotics.IsLittleO.const_mul_right
Asymptotics.isLittleO_pow_pow_atTop_of_lt
Finset.mem_range
Asymptotics.IsEquivalent.refl
Asymptotics.IsLittleO
Asymptotics.IsLittleO.comp_tendsto
Asymptotics.isLittleO_of_tendsto'
degree_neg
leadingCoeff_neg
IsOrderedAddMonoid.toAddLeftMono
natDegree_pos_iff_degree_pos
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Filter.tendsto_const_mul_pow_atTop_iff
Filter.tendsto_const_mul_pow_atTop
LT.lt.ne'
LE.le.lt_of_ne'
leadingCoeff_ne_zero
natDegree_eq_zero_iff_degree_le_zero
tendsto_const_mul_pow_nhds_iff
tendsto_const_nhds
---
β Back to Index