Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Polynomial/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsabs_div_tendsto_atBot_atTop_of_degree_gt, abs_div_tendsto_atTop_atTop_of_degree_gt, abs_div_tendsto_atTop_of_degree_gt, abs_isBoundedUnder_iff, abs_tendsto_atBot, abs_tendsto_atBot_iff, abs_tendsto_atTop, abs_tendsto_atTop_iff, div_tendsto_atBot_leadingCoeff_div_of_degree_eq, div_tendsto_atBot_of_degree_gt, div_tendsto_atBot_of_degree_gt', div_tendsto_atBot_zero_iff_degree_lt, div_tendsto_atBot_zero_of_degree_lt, div_tendsto_atTop_leadingCoeff_div_of_degree_eq, div_tendsto_atTop_of_degree_gt, div_tendsto_atTop_of_degree_gt', div_tendsto_atTop_zero_iff_degree_lt, div_tendsto_atTop_zero_of_degree_lt, div_tendsto_leadingCoeff_div_of_degree_eq, div_tendsto_zero_iff_degree_lt, div_tendsto_zero_of_degree_lt, eventually_atBot_not_isRoot, eventually_atTop_not_isRoot, eventually_no_roots, isBigO_atBot_of_degree_le, isBigO_atTop_of_degree_le, isBigO_of_degree_le, isBoundedUnder_abs_atBot_iff, isBoundedUnder_abs_atTop_iff, isEquivalent_atBot_div, isEquivalent_atBot_lead, isEquivalent_atTop_div, isEquivalent_atTop_lead, isLittleO_atBot_of_degree_lt, isLittleO_atTop_of_degree_lt, tendsto_atBot_iff_leadingCoeff_nonpos, tendsto_atBot_of_leadingCoeff_nonpos, tendsto_atTop_iff_leadingCoeff_nonneg, tendsto_atTop_of_leadingCoeff_nonneg, tendsto_nhds_iff
40
Total40

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
abs_div_tendsto_atBot_atTop_of_degree_gt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Filter.atTop
β€”comp_eq_zero_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
coeff_neg
coeff_X_zero
neg_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
eval_comp
eval_neg
eval_X
neg_neg
Filter.Tendsto.comp
abs_div_tendsto_atTop_atTop_of_degree_gt
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
abs_div_tendsto_atTop_atTop_of_degree_gt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”Filter.Tendsto.comp
Filter.tendsto_abs_atTop_atTop
div_tendsto_atTop_of_degree_gt
Filter.tendsto_abs_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_tendsto_atBot_of_degree_gt
LT.lt.le
abs_div_tendsto_atTop_of_degree_gt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”abs_div_tendsto_atTop_atTop_of_degree_gt
abs_isBoundedUnder_iff πŸ“–mathematicalβ€”Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
abs
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
WithBot
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”isBoundedUnder_abs_atTop_iff
abs_tendsto_atBot πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Filter.atTop
β€”eval_comp
eval_neg
eval_X
neg_neg
Filter.Tendsto.comp
abs_tendsto_atTop
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
abs_tendsto_atBot_iff πŸ“–mathematicalβ€”Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Filter.atTop
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”not_le
isBoundedUnder_abs_atBot_iff
Filter.not_isBoundedUnder_of_tendsto_atTop
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
Nontrivial.to_nonempty
abs_tendsto_atBot
abs_tendsto_atTop πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
β€”le_total
Filter.Tendsto.comp
Filter.tendsto_abs_atTop_atTop
tendsto_atTop_of_leadingCoeff_nonneg
Filter.tendsto_abs_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
tendsto_atBot_of_leadingCoeff_nonpos
abs_tendsto_atTop_iff πŸ“–mathematicalβ€”Filter.Tendsto
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
β€”not_le
isBoundedUnder_abs_atTop_iff
Filter.not_isBoundedUnder_of_tendsto_atTop
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
abs_tendsto_atTop
div_tendsto_atBot_leadingCoeff_div_of_degree_eq πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
leadingCoeff
β€”Asymptotics.IsEquivalent.tendsto_nhds
Asymptotics.IsEquivalent.symm
isEquivalent_atBot_div
natDegree_eq_natDegree
sub_self
zpow_zero
mul_one
T5Space.toT1Space
OrderTopology.t5Space
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
div_tendsto_atBot_of_degree_gt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
leadingCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
eval
Filter.atTop
Filter.atBot
β€”lt_of_le_of_ne
div_ne_zero
ne_zero_of_degree_gt
leadingCoeff_eq_zero
div_tendsto_atBot_of_degree_gt'
div_tendsto_atBot_of_degree_gt' πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
leadingCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
eval
Filter.atTop
Filter.atBot
β€”LT.lt.false
div_zero
Asymptotics.IsEquivalent.tendsto_atBot
Asymptotics.IsEquivalent.symm
isEquivalent_atTop_div
Filter.Tendsto.const_mul_atTop_of_neg
Filter.tendsto_zpow_atTop_atTop
natDegree_lt_natDegree_iff
div_tendsto_atBot_zero_iff_degree_lt πŸ“–mathematicalβ€”Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”degree_comp_neg_X
comp_eq_zero_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
coeff_neg
coeff_X_zero
neg_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
div_tendsto_atTop_zero_iff_degree_lt
eval_comp
eval_neg
eval_X
Filter.Tendsto.comp
Filter.tendsto_neg_atTop_atBot
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_tendsto_atBot_zero_of_degree_lt
div_tendsto_atBot_zero_of_degree_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”eval_comp
eval_neg
eval_X
neg_neg
Filter.Tendsto.comp
div_tendsto_atTop_zero_of_degree_lt
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
div_tendsto_atTop_leadingCoeff_div_of_degree_eq πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
leadingCoeff
β€”Asymptotics.IsEquivalent.tendsto_nhds
Asymptotics.IsEquivalent.symm
isEquivalent_atTop_div
sub_self
zpow_zero
mul_one
T5Space.toT1Space
OrderTopology.t5Space
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
div_tendsto_atTop_of_degree_gt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
leadingCoeff
Filter.Tendsto
eval
Filter.atTop
β€”lt_of_le_of_ne
div_ne_zero
ne_zero_of_degree_gt
leadingCoeff_eq_zero
div_tendsto_atTop_of_degree_gt'
div_tendsto_atTop_of_degree_gt' πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
leadingCoeff
Filter.Tendsto
eval
Filter.atTop
β€”LT.lt.false
div_zero
Asymptotics.IsEquivalent.tendsto_atTop
Asymptotics.IsEquivalent.symm
isEquivalent_atTop_div
Filter.Tendsto.const_mul_atTop
Filter.tendsto_zpow_atTop_atTop
natDegree_lt_natDegree_iff
div_tendsto_atTop_zero_iff_degree_lt πŸ“–mathematicalβ€”Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”div_eq_mul_inv
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
leadingCoeff_eq_zero
degree_zero
bot_lt_iff_ne_bot
degree_eq_bot
Asymptotics.IsEquivalent.tendsto_nhds
isEquivalent_atTop_div
tendsto_const_mul_zpow_atTop_nhds_iff
degree_lt_degree
zero_add
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
div_tendsto_atTop_zero_of_degree_lt
div_tendsto_atTop_zero_of_degree_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”eval_zero
zero_div
T5Space.toT1Space
OrderTopology.t5Space
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Asymptotics.IsEquivalent.tendsto_nhds
Asymptotics.IsEquivalent.symm
isEquivalent_atTop_div
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tendsto_zpow_atTop_zero
natDegree_lt_natDegree_iff
div_tendsto_leadingCoeff_div_of_degree_eq πŸ“–mathematicaldegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
leadingCoeff
β€”div_tendsto_atTop_leadingCoeff_div_of_degree_eq
div_tendsto_zero_iff_degree_lt πŸ“–mathematicalβ€”Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
β€”div_tendsto_atTop_zero_iff_degree_lt
div_tendsto_zero_of_degree_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.Tendsto
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
β€”div_tendsto_atTop_zero_of_degree_lt
eventually_atBot_not_isRoot πŸ“–mathematicalβ€”Filter.Eventually
IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Filter.atBot_le_cofinite
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Set.Finite.compl_mem_cofinite
finite_setOf_isRoot
instIsDomain
eventually_atTop_not_isRoot πŸ“–mathematicalβ€”Filter.Eventually
IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Filter.atTop_le_cofinite
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Set.Finite.compl_mem_cofinite
finite_setOf_isRoot
instIsDomain
eventually_no_roots πŸ“–mathematicalβ€”Filter.Eventually
IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”eventually_atTop_not_isRoot
isBigO_atBot_of_degree_le πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Asymptotics.IsBigO
NormedField.toNorm
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
β€”eval_comp
eval_neg
eval_X
neg_neg
Asymptotics.IsBigO.comp_tendsto
isBigO_atTop_of_degree_le
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
isBigO_atTop_of_degree_le πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Asymptotics.IsBigO
NormedField.toNorm
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
β€”eval_zero
Asymptotics.isBigO_zero
ne_zero_of_degree_ge_degree
Filter.mem_of_superset
eventually_atTop_not_isRoot
le_iff_lt_or_eq
Asymptotics.isBigO_of_div_tendsto_nhds
div_tendsto_atTop_zero_of_degree_lt
div_tendsto_atTop_leadingCoeff_div_of_degree_eq
isBigO_of_degree_le πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Asymptotics.IsBigO
NormedField.toNorm
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
β€”isBigO_atTop_of_degree_le
isBoundedUnder_abs_atBot_iff πŸ“–mathematicalβ€”Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atBot
abs
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
WithBot
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Mathlib.Tactic.Contrapose.contrapose₁
Filter.not_isBoundedUnder_of_tendsto_atTop
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Filter.atBot_neBot
SemilatticeInf.instIsCodirectedOrder
Nontrivial.to_nonempty
abs_tendsto_atBot
Filter.eventually_map
Filter.Eventually.of_forall
le_of_eq
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
eq_C_of_degree_le_zero
eval_C
isBoundedUnder_abs_atTop_iff πŸ“–mathematicalβ€”Filter.IsBoundedUnder
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atTop
abs
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
WithBot
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Mathlib.Tactic.Contrapose.contrapose₁
Filter.not_isBoundedUnder_of_tendsto_atTop
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
abs_tendsto_atTop
Filter.eventually_map
Filter.Eventually.of_forall
le_of_eq
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
eq_C_of_degree_le_zero
eval_C
isEquivalent_atBot_div πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
leadingCoeff
DivInvMonoid.toZPow
natDegree
β€”eval_zero
zero_div
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
zero_sub
zpow_neg
zpow_natCast
MulZeroClass.zero_mul
div_zero
sub_zero
Asymptotics.IsEquivalent.trans
Asymptotics.IsEquivalent.symm
Asymptotics.IsEquivalent.div
isEquivalent_atBot_lead
Filter.EventuallyEq.isEquivalent
Filter.Eventually.mono
Filter.eventually_lt_atBot
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
zpow_subβ‚€
LT.lt.ne
isEquivalent_atBot_lead πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”eval_comp
eval_neg
eval_X
neg_neg
comp_neg_X_leadingCoeff_eq
mul_rotate
natDegree_comp
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
natDegree_neg
natDegree_X
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mul_comm
one_mul
mul_neg
mul_one
Asymptotics.IsEquivalent.comp_tendsto
isEquivalent_atTop_lead
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
isEquivalent_atTop_div πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
leadingCoeff
DivInvMonoid.toZPow
natDegree
β€”eval_zero
zero_div
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
zero_sub
zpow_neg
zpow_natCast
MulZeroClass.zero_mul
div_zero
sub_zero
Asymptotics.IsEquivalent.trans
Asymptotics.IsEquivalent.symm
Asymptotics.IsEquivalent.div
isEquivalent_atTop_lead
Filter.EventuallyEq.isEquivalent
Filter.Eventually.mono
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
zpow_subβ‚€
LT.lt.ne
isEquivalent_atTop_lead πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
leadingCoeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
natDegree
β€”eval_zero
pow_zero
mul_one
eval_eq_sum_range
Finset.sum_range_succ
Asymptotics.IsLittleO.add_isEquivalent
Asymptotics.IsLittleO.sum
Asymptotics.IsLittleO.const_mul_left
Asymptotics.IsLittleO.const_mul_right
NormedDivisionRing.toNormMulClass
leadingCoeff_eq_zero
Asymptotics.isLittleO_pow_pow_atTop_of_lt
Finset.mem_range
Asymptotics.IsEquivalent.refl
isLittleO_atBot_of_degree_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Asymptotics.IsLittleO
NormedField.toNorm
Filter.atBot
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
β€”eval_comp
eval_neg
eval_X
neg_neg
Asymptotics.IsLittleO.comp_tendsto
isLittleO_atTop_of_degree_lt
degree_comp_neg_X
Filter.tendsto_neg_atBot_atTop
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
isLittleO_atTop_of_degree_lt πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Asymptotics.IsLittleO
NormedField.toNorm
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
eval
β€”eval_zero
ne_zero_of_degree_ge_degree
LT.lt.le
Filter.mem_of_superset
eventually_atTop_not_isRoot
Asymptotics.isLittleO_of_tendsto'
div_tendsto_atTop_zero_of_degree_lt
tendsto_atBot_iff_leadingCoeff_nonpos πŸ“–mathematicalβ€”Filter.Tendsto
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Filter.atBot
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
Preorder.toLE
leadingCoeff
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
degree_neg
leadingCoeff_neg
IsOrderedAddMonoid.toAddLeftMono
tendsto_atBot_of_leadingCoeff_nonpos πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
leadingCoeff
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Filter.Tendsto
eval
Filter.atTop
Filter.atBot
β€”tendsto_atBot_iff_leadingCoeff_nonpos
tendsto_atTop_iff_leadingCoeff_nonneg πŸ“–mathematicalβ€”Filter.Tendsto
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
Preorder.toLE
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
leadingCoeff
β€”Asymptotics.IsEquivalent.tendsto_atTop
isEquivalent_atTop_lead
natDegree_pos_iff_degree_pos
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Filter.tendsto_const_mul_pow_atTop_iff
LT.lt.le
tendsto_atTop_of_leadingCoeff_nonneg
tendsto_atTop_of_leadingCoeff_nonneg πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
leadingCoeff
Filter.Tendsto
eval
Filter.atTop
β€”Asymptotics.IsEquivalent.tendsto_atTop
Asymptotics.IsEquivalent.symm
isEquivalent_atTop_lead
Filter.tendsto_const_mul_pow_atTop
LT.lt.ne'
natDegree_pos_iff_degree_pos
LE.le.lt_of_ne'
leadingCoeff_ne_zero
ne_zero_of_degree_gt
tendsto_nhds_iff πŸ“–mathematicalβ€”Filter.Tendsto
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
leadingCoeff
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Asymptotics.IsEquivalent.tendsto_nhds
isEquivalent_atTop_lead
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
MulZeroClass.zero_mul
T5Space.toT1Space
OrderTopology.t5Space
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
Nontrivial.to_nonempty
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
leadingCoeff_eq_zero
natDegree_eq_zero_iff_degree_le_zero
tendsto_const_mul_pow_nhds_iff
Asymptotics.IsEquivalent.symm
pow_zero
mul_one
tendsto_const_nhds

---

← Back to Index