Documentation Verification Report

MahlerMeasure

πŸ“ Source: Mathlib/Analysis/Polynomial/MahlerMeasure.lean

Statistics

MetricCount
DefinitionslogMahlerMeasure, mahlerMeasure
2
TheoremsintervalIntegrable_mahlerMeasure, leading_coeff_le_mahlerMeasure, logMahlerMeasure_C_mul, logMahlerMeasure_C_mul_X_add_C, logMahlerMeasure_X, logMahlerMeasure_X_add_C, logMahlerMeasure_X_sub_C, logMahlerMeasure_const, logMahlerMeasure_def, logMahlerMeasure_eq_log_MahlerMeasure, logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots, logMahlerMeasure_monomial, logMahlerMeasure_mul_eq_add_logMahelerMeasure, logMahlerMeasure_mul_eq_add_logMahlerMeasure, logMahlerMeasure_of_degree_eq_one, logMahlerMeasure_one, logMahlerMeasure_zero, mahlerMeasure_C_mul_X_add_C, mahlerMeasure_X_add_C, mahlerMeasure_X_sub_C, mahlerMeasure_const, mahlerMeasure_def_of_ne_zero, mahlerMeasure_eq_leadingCoeff_mul_prod_roots, mahlerMeasure_eq_zero_iff, mahlerMeasure_le_sum_norm_coeff, mahlerMeasure_mul, mahlerMeasure_nonneg, mahlerMeasure_of_degree_eq_one, mahlerMeasure_one, mahlerMeasure_pos_of_ne_zero, mahlerMeasure_zero, norm_coeff_le_choose_mul_mahlerMeasure, one_le_prod_max_one_norm_roots, prod_mahlerMeasure_eq_mahlerMeasure_prod, prod_max_one_norm_roots_le_mahlerMeasure_of_one_le_leadingCoeff, supNorm_le_choose_natDegree_div_two_mul_mahlerMeasure
36
Total38

Polynomial

Definitions

NameCategoryTheorems
logMahlerMeasure πŸ“–CompOp
15 mathmath: logMahlerMeasure_one, logMahlerMeasure_C_mul, logMahlerMeasure_of_degree_eq_one, logMahlerMeasure_mul_eq_add_logMahelerMeasure, logMahlerMeasure_mul_eq_add_logMahlerMeasure, logMahlerMeasure_X_sub_C, logMahlerMeasure_X_add_C, logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots, logMahlerMeasure_def, logMahlerMeasure_X, logMahlerMeasure_eq_log_MahlerMeasure, logMahlerMeasure_zero, logMahlerMeasure_const, logMahlerMeasure_monomial, logMahlerMeasure_C_mul_X_add_C
mahlerMeasure πŸ“–CompOp
24 mathmath: mahlerMeasure_const, mahlerMeasure_def_of_ne_zero, mahlerMeasure_eq_leadingCoeff_mul_prod_roots, mahlerMeasure_nonneg, mahlerMeasure_eq_zero_iff, mahlerMeasure_C_mul_X_add_C, prod_max_one_norm_roots_le_mahlerMeasure_of_one_le_leadingCoeff, one_le_mahlerMeasure_of_ne_zero, mahlerMeasure_pos_of_ne_zero, mahlerMeasure_X_add_C, mahlerMeasure_mul, prod_mahlerMeasure_eq_mahlerMeasure_prod, logMahlerMeasure_eq_log_MahlerMeasure, mahlerMeasure_X_sub_C, mahlerMeasure_one, mahlerMeasure_zero, leading_coeff_le_mahlerMeasure, supNorm_le_choose_natDegree_div_two_mul_mahlerMeasure, mahlerMeasure_of_degree_eq_one, cyclotomic_mahlerMeasure_eq_one, norm_coeff_le_choose_mul_mahlerMeasure, finite_mahlerMeasure_le, mahlerMeasure_le_sum_norm_coeff, card_mahlerMeasure_le_prod

Theorems

NameKindAssumesProvesValidatesDepends On
intervalIntegrable_mahlerMeasure πŸ“–mathematicalβ€”IntervalIntegrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
Real.log
Norm.norm
Complex
Complex.instNorm
eval
Complex.instSemiring
circleMap
Complex.instZero
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
circleIntegrable_def
circleIntegrable_log_norm_meromorphicOn
AnalyticOnNhd.meromorphicOn
AnalyticOnNhd.aeval_polynomial
analyticOnNhd_id
leading_coeff_le_mahlerMeasure πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
Complex.instNorm
leadingCoeff
Complex.instSemiring
mahlerMeasure
β€”mul_one
instIsDomain
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
one_le_prod_max_one_norm_roots
norm_nonneg
logMahlerMeasure_C_mul πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real
Real.instAdd
Real.log
Norm.norm
Complex.instNorm
β€”logMahlerMeasure_mul_eq_add_logMahlerMeasure
instNoZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
nontrivial
Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
logMahlerMeasure_const
logMahlerMeasure_C_mul_X_add_C πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Real
Real.instAdd
Real.log
Norm.norm
Complex.instNorm
Real.posLog
Complex.instMul
Complex.instInv
β€”mul_add
Distrib.leftDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_inv_cancel_leftβ‚€
logMahlerMeasure_C_mul
X_add_C_ne_zero
Complex.instNontrivial
logMahlerMeasure_X_add_C
logMahlerMeasure_X πŸ“–mathematicalβ€”logMahlerMeasure
X
Complex
Complex.instSemiring
Real
Real.instZero
β€”eval_X
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
norm_circleMap_zero
abs_one
Real.instIsOrderedRing
Real.log_one
intervalIntegral.integral_zero
MulZeroClass.mul_zero
logMahlerMeasure_X_add_C πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real.posLog
Norm.norm
Complex.instNorm
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
logMahlerMeasure_X_sub_C
norm_neg
logMahlerMeasure_X_sub_C πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instSub
Complex.instRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real.posLog
Norm.norm
Complex.instNorm
β€”eval_sub
eval_X
eval_C
circleAverage_log_norm_sub_const_eq_posLog
logMahlerMeasure_const πŸ“–mathematicalβ€”logMahlerMeasure
DFunLike.coe
RingHom
Complex
Polynomial
Complex.instSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real.log
Norm.norm
Complex.instNorm
β€”eval_C
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
mul_assoc
inv_mul_cancel_leftβ‚€
RCLike.charZero_rclike
logMahlerMeasure_def πŸ“–mathematicalβ€”logMahlerMeasure
Real.circleAverage
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Norm.norm
Complex
Complex.instNorm
eval
Complex.instSemiring
Complex.instZero
Real.instOne
β€”β€”
logMahlerMeasure_eq_log_MahlerMeasure πŸ“–mathematicalβ€”logMahlerMeasure
Real.log
mahlerMeasure
β€”mahlerMeasure.eq_1
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
Real.log_exp
eval_zero
norm_zero
Real.log_zero
intervalIntegral.integral_zero
MulZeroClass.mul_zero
logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots πŸ“–mathematicalβ€”logMahlerMeasure
Real
Real.instAdd
Real.log
Norm.norm
Complex
Complex.instNorm
leadingCoeff
Complex.instSemiring
Multiset.sum
Real.instAddCommMonoid
Multiset.map
Real.posLog
roots
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
β€”instIsDomain
logMahlerMeasure_zero
norm_zero
Real.log_zero
Multiset.map_congr
roots.congr_simp
roots_zero
add_zero
Splits.eq_prod_roots
IsAlgClosed.splits
Complex.isAlgClosed
logMahlerMeasure_mul_eq_add_logMahlerMeasure
instNoZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
nontrivial
Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
logMahlerMeasure_eq_log_MahlerMeasure
mahlerMeasure_const
prod_mahlerMeasure_eq_mahlerMeasure_prod
Multiset.map_map
mahlerMeasure_X_sub_C
Real.log_multiset_prod
Real.posLog_eq_log_max_one
logMahlerMeasure_monomial πŸ“–mathematicalβ€”logMahlerMeasure
DFunLike.coe
LinearMap
Complex
Complex.instSemiring
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Real.log
Norm.norm
Complex.instNorm
β€”eval_monomial
Complex.norm_mul
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
norm_circleMap_zero
abs_one
Real.instIsOrderedRing
one_pow
mul_one
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
mul_assoc
inv_mul_cancel_leftβ‚€
RCLike.charZero_rclike
logMahlerMeasure_mul_eq_add_logMahelerMeasure πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instMul
Real
Real.instAdd
β€”logMahlerMeasure_mul_eq_add_logMahlerMeasure
logMahlerMeasure_mul_eq_add_logMahlerMeasure πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instMul
Real
Real.instAdd
β€”logMahlerMeasure_eq_log_MahlerMeasure
mahlerMeasure_mul
Real.log_mul
instNoZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
logMahlerMeasure_of_degree_eq_one πŸ“–mathematicaldegree
Complex
Complex.instSemiring
WithBot
WithBot.one
Nat.instOne
logMahlerMeasure
Real
Real.instAdd
Real.log
Norm.norm
Complex.instNorm
coeff
Real.posLog
Complex.instMul
Complex.instInv
β€”eq_X_add_C_of_degree_le_one
le_of_eq
logMahlerMeasure_C_mul_X_add_C
coeff_ne_zero_of_eq_degree
Complex.norm_mul
norm_inv
coeff_add
coeff_mul_X
coeff_C_zero
coeff_C_succ
add_zero
mul_coeff_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
logMahlerMeasure_one πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instOne
Real
Real.instZero
β€”eval_one
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
Complex.instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Real.log_one
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
intervalIntegral.integral_zero
MulZeroClass.mul_zero
logMahlerMeasure_zero πŸ“–mathematicalβ€”logMahlerMeasure
Polynomial
Complex
Complex.instSemiring
instZero
Real
Real.instZero
β€”eval_zero
norm_zero
Real.log_zero
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
intervalIntegral.integral_zero
MulZeroClass.mul_zero
mahlerMeasure_C_mul_X_add_C πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
X
Real
Real.instMax
Norm.norm
Complex.instNorm
β€”mul_add
Distrib.leftDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_inv_cancel_leftβ‚€
mahlerMeasure_mul
mahlerMeasure_const
mahlerMeasure_X_add_C
Nat.cast_one
nnnorm_mul
NormedDivisionRing.toNormMulClass
nnnorm_inv
mul_max
NNReal.mulLeftMono
mul_one
mahlerMeasure_X_add_C πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real
Real.instMax
Real.instOne
Norm.norm
Complex.instNorm
β€”RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
mahlerMeasure_X_sub_C
norm_neg
mahlerMeasure_X_sub_C πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instSub
Complex.instRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real
Real.instMax
Real.instOne
Norm.norm
Complex.instNorm
β€”logMahlerMeasure_X_sub_C
Real.exp_log
lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_max_left
mahlerMeasure_pos_of_ne_zero
X_sub_C_ne_zero
Complex.instNontrivial
Real.posLog_eq_log_max_one
norm_nonneg
logMahlerMeasure_eq_log_MahlerMeasure
mahlerMeasure_const πŸ“–mathematicalβ€”mahlerMeasure
DFunLike.coe
RingHom
Complex
Polynomial
Complex.instSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Norm.norm
Complex.instNorm
β€”nontrivial
Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
logMahlerMeasure_const
norm_zero
Real.exp_log
mahlerMeasure_def_of_ne_zero πŸ“–mathematicalβ€”mahlerMeasure
Real.exp
Real
Real.instMul
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Norm.norm
Complex
Complex.instNorm
eval
Complex.instSemiring
circleMap
Complex.instZero
Real.instOne
Real.instZero
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
mahlerMeasure_eq_leadingCoeff_mul_prod_roots πŸ“–mathematicalβ€”mahlerMeasure
Real
Real.instMul
Norm.norm
Complex
Complex.instNorm
leadingCoeff
Complex.instSemiring
Multiset.prod
Real.instCommMonoid
Multiset.map
Real.instMax
Real.instOne
roots
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
β€”instIsDomain
mahlerMeasure_zero
norm_zero
Multiset.map_congr
roots.congr_simp
roots_zero
mul_one
logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots
Real.exp_log
norm_pos_iff
leadingCoeff_ne_zero
mahlerMeasure_pos_of_ne_zero
Real.exp_add
logMahlerMeasure_eq_log_MahlerMeasure
Real.posLog_eq_log_max_one
Real.exp_multiset_sum
Multiset.map_map
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mahlerMeasure_eq_zero_iff πŸ“–mathematicalβ€”mahlerMeasure
Real
Real.instZero
Polynomial
Complex
Complex.instSemiring
instZero
β€”Mathlib.Tactic.Contrapose.contrapose₁
Nat.instAtLeastTwoHAddOfNat
mahlerMeasure_def_of_ne_zero
mul_inv_rev
mahlerMeasure_zero
mahlerMeasure_le_sum_norm_coeff πŸ“–mathematicalβ€”Real
Real.instLE
mahlerMeasure
sum
Complex
Complex.instSemiring
Real.instAddCommMonoid
Norm.norm
Complex.instNorm
β€”mahlerMeasure_zero
sum_zero_index
Finset.sum_pos'
Real.instIsOrderedCancelAddMonoid
norm_nonneg
Nat.instAtLeastTwoHAddOfNat
mul_inv_rev
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
mul_assoc
inv_mul_cancel_leftβ‚€
RCLike.charZero_rclike
Real.exp_log
mahlerMeasure_def_of_ne_zero
Real.circleAverage_def
smul_eq_mul
Real.exp_monotone
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
intervalIntegral.integral_mono_ae_restrict
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
intervalIntegrable_mahlerMeasure
Real.locallyFinite_volume
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.eq_1
Filter.eventually_iff_exists_mem
MeasureTheory.mem_ae_iff
Set.compl_def
MeasureTheory.Measure.restrict_apply'
BorelSpace.opensMeasurable
Real.borelSpace
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Set.Finite.measure_zero
Set.Finite.of_diff
Set.inter_diff_assoc
Set.Icc_diff_right
Set.setOf_inter_eq_sep
Set.Finite.of_finite_image
Set.Finite.subset
instIsDomain
Multiset.finite_toSet
injOn_circleMap_of_abs_sub_le'
one_ne_zero
NeZero.charZero_one
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.sub_neg_of_lt
Set.finite_singleton
Real.noAtoms_volume
Real.log_le_log
norm_pos_iff
eval_eq_sum
norm_sum_le_of_le
Complex.norm_mul
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
norm_circleMap_zero
abs_one
one_pow
mul_one
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mahlerMeasure_mul πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instMul
Real
Real.instMul
β€”mahlerMeasure_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
mul_eq_zero
instNoZeroDivisors
Nat.instAtLeastTwoHAddOfNat
eval_mul
Complex.norm_mul
mul_inv_rev
Real.exp_add
left_distrib
Distrib.leftDistribClass
intervalIntegral.integral_add
intervalIntegrable_mahlerMeasure
intervalIntegral.integral_congr_ae
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_iff
Set.Finite.measure_zero
Set.Finite.of_finite_image
Set.Finite.subset
instIsDomain
Multiset.finite_toSet
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Real.log_mul
Set.InjOn.mono
injOn_circleMap_of_abs_sub_le
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
zero_sub
abs_neg
abs_mul
Real.instIsOrderedRing
Nat.abs_ofNat
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
Real.instIsOrderedAddMonoid
Real.noAtoms_volume
mahlerMeasure_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
mahlerMeasure
β€”mahlerMeasure_zero
Nat.instAtLeastTwoHAddOfNat
mahlerMeasure_def_of_ne_zero
mul_inv_rev
mahlerMeasure_of_degree_eq_one πŸ“–mathematicaldegree
Complex
Complex.instSemiring
WithBot
WithBot.one
Nat.instOne
mahlerMeasure
Real
Real.instMax
Norm.norm
Complex.instNorm
coeff
β€”eq_X_add_C_of_degree_le_one
le_of_eq
mahlerMeasure_C_mul_X_add_C
coeff_ne_zero_of_eq_degree
coeff_add
coeff_mul_X
coeff_C_zero
coeff_C_succ
add_zero
mul_coeff_zero
coeff_X_zero
MulZeroClass.mul_zero
zero_add
mahlerMeasure_one πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instOne
Real
Real.instOne
β€”NeZero.charZero_one
charZero
Complex.instCharZero
logMahlerMeasure_one
Real.exp_zero
mahlerMeasure_pos_of_ne_zero πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
mahlerMeasure
β€”β€”
mahlerMeasure_zero πŸ“–mathematicalβ€”mahlerMeasure
Polynomial
Complex
Complex.instSemiring
instZero
Real
Real.instZero
β€”β€”
norm_coeff_le_choose_mul_mahlerMeasure πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Complex
Complex.instNorm
coeff
Complex.instSemiring
Real.instMul
Real.instNatCast
Nat.choose
natDegree
mahlerMeasure
β€”norm_zero
mahlerMeasure_zero
MulZeroClass.mul_zero
lt_or_ge
coeff_eq_zero_of_natDegree_lt
Nat.choose_eq_zero_of_lt
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
MulZeroClass.zero_mul
instIsDomain
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
mul_left_comm
coeff_eq_esymm_roots_of_card
splits_iff_card_roots
IsAlgClosed.splits
Complex.isAlgClosed
mul_assoc
norm_mul
NormedDivisionRing.toNormMulClass
norm_pow
NormedDivisionRing.to_normOneClass
norm_neg
NormOneClass.norm_one
one_pow
one_mul
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
leadingCoeff_ne_zero
Multiset.esymm.eq_1
Finset.sum_multiset_map_count
le_trans
norm_sum_le
Finset.sum_congr
nsmul_eq_mul
norm_natCast
RCLike.instNormSMulClassInt
Finset.prod_le_prod
Real.instZeroLEOneClass
pow_nonneg
IsOrderedRing.toZeroLEOneClass
norm_nonneg
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
le_max_right
Finset.prod_congr
Nat.cast_one
Finset.prod_le_prod_of_subset_of_one_le'
NNReal.mulLeftMono
Multiset.toFinset_subset
Multiset.subset_of_le
Multiset.mem_powersetCard
Multiset.mem_toFinset
one_le_powβ‚€
le_max_left
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
lt_max_of_lt_left
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
pow_le_pow_rightβ‚€
Multiset.count_le_of_le
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
Finset.prod_multiset_map_count
Finset.prod_multiset_count
norm_prod
Nat.cast_nonneg'
Finset.sum_mul
Multiset.sum_count_eq_card
Multiset.card_powersetCard
Nat.choose_symm
one_le_prod_max_one_norm_roots πŸ“–mathematicalβ€”Real
Real.instLE
Real.instOne
Multiset.prod
Real.instCommMonoid
Multiset.map
Complex
Real.instMax
Norm.norm
Complex.instNorm
roots
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
β€”β€”
prod_mahlerMeasure_eq_mahlerMeasure_prod πŸ“–mathematicalβ€”mahlerMeasure
Multiset.prod
Polynomial
Complex
Complex.instSemiring
CommRing.toCommMonoid
commRing
Complex.commRing
Real
Real.instCommMonoid
Multiset.map
β€”Multiset.induction_on
mahlerMeasure_one
Multiset.prod_cons
mahlerMeasure_mul
Multiset.map_cons
prod_max_one_norm_roots_le_mahlerMeasure_of_one_le_leadingCoeff πŸ“–mathematicalReal
Real.instLE
Real.instOne
Norm.norm
Complex
Complex.instNorm
leadingCoeff
Complex.instSemiring
Multiset.prod
Real.instCommMonoid
Multiset.map
Real.instMax
roots
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
mahlerMeasure
β€”instIsDomain
one_mul
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
LE.le.trans
zero_le_one
Real.instZeroLEOneClass
one_le_prod_max_one_norm_roots
supNorm_le_choose_natDegree_div_two_mul_mahlerMeasure πŸ“–mathematicalβ€”Real
Real.instLE
supNorm
Complex
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Real.instMul
Real.instNatCast
Nat.choose
natDegree
Complex.instSemiring
mahlerMeasure
β€”exists_eq_supNorm
norm_coeff_le_choose_mul_mahlerMeasure
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.choose_le_middle
mahlerMeasure_nonneg

---

← Back to Index