π Source: Mathlib/Analysis/Polynomial/MahlerMeasure.lean
logMahlerMeasure
mahlerMeasure
intervalIntegrable_mahlerMeasure
leading_coeff_le_mahlerMeasure
logMahlerMeasure_C_mul
logMahlerMeasure_C_mul_X_add_C
logMahlerMeasure_X
logMahlerMeasure_X_add_C
logMahlerMeasure_X_sub_C
logMahlerMeasure_const
logMahlerMeasure_def
logMahlerMeasure_eq_log_MahlerMeasure
logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots
logMahlerMeasure_monomial
logMahlerMeasure_mul_eq_add_logMahelerMeasure
logMahlerMeasure_mul_eq_add_logMahlerMeasure
logMahlerMeasure_of_degree_eq_one
logMahlerMeasure_one
logMahlerMeasure_zero
mahlerMeasure_C_mul_X_add_C
mahlerMeasure_X_add_C
mahlerMeasure_X_sub_C
mahlerMeasure_const
mahlerMeasure_def_of_ne_zero
mahlerMeasure_eq_leadingCoeff_mul_prod_roots
mahlerMeasure_eq_zero_iff
mahlerMeasure_le_sum_norm_coeff
mahlerMeasure_mul
mahlerMeasure_nonneg
mahlerMeasure_of_degree_eq_one
mahlerMeasure_one
mahlerMeasure_pos_of_ne_zero
mahlerMeasure_zero
norm_coeff_le_choose_mul_mahlerMeasure
one_le_prod_max_one_norm_roots
prod_mahlerMeasure_eq_mahlerMeasure_prod
prod_max_one_norm_roots_le_mahlerMeasure_of_one_le_leadingCoeff
supNorm_le_choose_natDegree_div_two_mul_mahlerMeasure
one_le_mahlerMeasure_of_ne_zero
cyclotomic_mahlerMeasure_eq_one
finite_mahlerMeasure_le
card_mahlerMeasure_le_prod
IntervalIntegrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NormedAddGroup.toENormedAddMonoid
NormedAddCommGroup.toNormedAddGroup
Real.normedAddCommGroup
Real.log
Norm.norm
Complex
Complex.instNorm
eval
Complex.instSemiring
circleMap
Complex.instZero
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instZero
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
circleIntegrable_def
circleIntegrable_log_norm_meromorphicOn
AnalyticOnNhd.meromorphicOn
AnalyticOnNhd.aeval_polynomial
analyticOnNhd_id
Real.instLE
leadingCoeff
mul_one
instIsDomain
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Real.instAdd
instNoZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
nontrivial
Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
instAdd
X
Real.posLog
Complex.instMul
Complex.instInv
mul_add
Distrib.leftDistribClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_inv_cancel_leftβ
X_add_C_ne_zero
eval_X
mul_inv_rev
norm_circleMap_zero
abs_one
Real.log_one
intervalIntegral.integral_zero
MulZeroClass.mul_zero
RingHomClass.toAddMonoidHomClass
norm_neg
instSub
Complex.instRing
eval_sub
eval_C
circleAverage_log_norm_sub_const_eq_posLog
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
mul_assoc
inv_mul_cancel_leftβ
RCLike.charZero_rclike
Real.circleAverage
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
mahlerMeasure.eq_1
Real.log_exp
eval_zero
norm_zero
Real.log_zero
Multiset.sum
Real.instAddCommMonoid
Multiset.map
roots
Complex.commRing
Field.toSemifield
Complex.instField
Multiset.map_congr
roots.congr_simp
roots_zero
add_zero
Splits.eq_prod_roots
IsAlgClosed.splits
Complex.isAlgClosed
Multiset.map_map
Real.log_multiset_prod
Real.posLog_eq_log_max_one
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
eval_monomial
Complex.norm_mul
norm_pow
NormedDivisionRing.to_normOneClass
one_pow
Real.log_mul
degree
WithBot
WithBot.one
Nat.instOne
coeff
eq_X_add_C_of_degree_le_one
le_of_eq
coeff_ne_zero_of_eq_degree
norm_inv
coeff_add
coeff_mul_X
coeff_C_zero
coeff_C_succ
mul_coeff_zero
coeff_X_zero
zero_add
instOne
eval_one
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
instZero
Real.instMax
Nat.cast_one
nnnorm_mul
nnnorm_inv
mul_max
NNReal.mulLeftMono
Real.exp_log
lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
le_max_left
X_sub_C_ne_zero
Real.exp
Real.instInv
intervalIntegral
Multiset.prod
Real.instCommMonoid
norm_pos_iff
leadingCoeff_ne_zero
Real.exp_add
Real.exp_multiset_sum
Mathlib.Tactic.Contrapose.contraposeβ
sum
sum_zero_index
Finset.sum_pos'
Real.instIsOrderedCancelAddMonoid
Real.circleAverage_def
smul_eq_mul
Real.exp_monotone
intervalIntegral.integral_mono_ae_restrict
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
Real.locallyFinite_volume
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyLE.eq_1
Filter.eventually_iff_exists_mem
MeasureTheory.mem_ae_iff
Set.compl_def
MeasureTheory.Measure.restrict_apply'
BorelSpace.opensMeasurable
Real.borelSpace
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Set.Finite.measure_zero
Set.Finite.of_diff
Set.inter_diff_assoc
Set.Icc_diff_right
Set.setOf_inter_eq_sep
Set.Finite.of_finite_image
Set.Finite.subset
Multiset.finite_toSet
injOn_circleMap_of_abs_sub_le'
one_ne_zero
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.sub_neg_of_lt
Set.finite_singleton
Real.noAtoms_volume
Real.log_le_log
eval_eq_sum
norm_sum_le_of_le
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_eq_zero
eval_mul
left_distrib
intervalIntegral.integral_add
intervalIntegral.integral_congr_ae
MeasureTheory.ae_iff
Mathlib.Tactic.Contrapose.contraposeβ
Set.InjOn.mono
injOn_circleMap_of_abs_sub_le
zero_sub
abs_neg
abs_mul
Nat.abs_ofNat
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
charZero
Complex.instCharZero
Real.exp_zero
Real.instLT
Nat.choose
natDegree
lt_or_ge
coeff_eq_zero_of_natDegree_lt
Nat.choose_eq_zero_of_lt
CharP.cast_eq_zero
CharP.ofCharZero
MulZeroClass.zero_mul
mul_left_comm
coeff_eq_esymm_roots_of_card
splits_iff_card_roots
norm_mul
NormOneClass.norm_one
one_mul
mul_le_mul_iff_rightβ
Multiset.esymm.eq_1
Finset.sum_multiset_map_count
le_trans
norm_sum_le
Finset.sum_congr
nsmul_eq_mul
norm_natCast
RCLike.instNormSMulClassInt
Finset.prod_le_prod
pow_nonneg
IsOrderedRing.toZeroLEOneClass
pow_le_pow_leftβ
IsOrderedRing.toMulPosMono
le_max_right
Finset.prod_congr
Finset.prod_le_prod_of_subset_of_one_le'
Multiset.toFinset_subset
Multiset.subset_of_le
Multiset.mem_powersetCard
Multiset.mem_toFinset
one_le_powβ
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
lt_max_of_lt_left
pow_le_pow_rightβ
Multiset.count_le_of_le
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Finset.prod_multiset_map_count
Finset.prod_multiset_count
norm_prod
Nat.cast_nonneg'
Finset.sum_mul
Multiset.sum_count_eq_card
Multiset.card_powersetCard
Nat.choose_symm
CommRing.toCommMonoid
commRing
Multiset.induction_on
Multiset.prod_cons
Multiset.map_cons
mul_le_mul_of_nonneg_right
LE.le.trans
zero_le_one
supNorm
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
exists_eq_supNorm
Nat.choose_le_middle
---
β Back to Index