Documentation Verification Report

Cardinality

πŸ“ Source: Mathlib/Analysis/Real/Cardinality.lean

Statistics

MetricCount
DefinitionscantorFunction, cantorFunctionAux
2
TheoremsIcc_countable_iff, Ico_countable_iff, Ioc_countable_iff, Ioo_countable_iff, cantorFunctionAux_eq, cantorFunctionAux_false, cantorFunctionAux_nonneg, cantorFunctionAux_succ, cantorFunctionAux_true, cantorFunctionAux_zero, cantorFunction_injective, cantorFunction_le, cantorFunction_succ, increasing_cantorFunction, instUncountableReal, mk_Icc_real, mk_Ici_real, mk_Ico_real, mk_Iic_real, mk_Iio_real, mk_Ioc_real, mk_Ioi_real, mk_Ioo_real, mk_real, mk_univ_real, not_countable_real, summable_cantor_function
27
Total29

Cardinal

Definitions

NameCategoryTheorems
cantorFunction πŸ“–CompOp
4 mathmath: increasing_cantorFunction, cantorFunction_succ, cantorFunction_injective, cantorFunction_le
cantorFunctionAux πŸ“–CompOp
7 mathmath: cantorFunctionAux_eq, cantorFunctionAux_false, cantorFunctionAux_nonneg, cantorFunctionAux_succ, cantorFunctionAux_true, cantorFunctionAux_zero, summable_cantor_function

Theorems

NameKindAssumesProvesValidatesDepends On
cantorFunctionAux_eq πŸ“–mathematicalβ€”cantorFunctionAuxβ€”β€”
cantorFunctionAux_false πŸ“–mathematicalβ€”cantorFunctionAux
Real
Real.instZero
β€”β€”
cantorFunctionAux_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
cantorFunctionAuxβ€”cantorFunctionAux_false
cantorFunctionAux_true
pow_nonneg
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
cantorFunctionAux_succ πŸ“–mathematicalβ€”cantorFunctionAux
Real
Real.instMul
β€”cantorFunctionAux_false
MulZeroClass.mul_zero
cantorFunctionAux_true
pow_succ'
cantorFunctionAux_true πŸ“–mathematicalβ€”cantorFunctionAux
Real
Monoid.toNatPow
Real.instMonoid
β€”β€”
cantorFunctionAux_zero πŸ“–mathematicalβ€”cantorFunctionAux
Real
Real.instOne
Real.instZero
β€”cantorFunctionAux_false
cantorFunctionAux_true
pow_zero
cantorFunction_injective πŸ“–mathematicalReal
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
cantorFunctionβ€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Contrapose.contrapose₁
Function.ne_iff
of_not_not
Nat.find_min
ne_of_lt
increasing_cantorFunction
Bool.eq_true_of_not_eq_false
Nat.find_spec
ne_of_gt
Bool.eq_false_of_not_eq_true
cantorFunction_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Real.instOne
cantorFunctionβ€”Summable.tsum_le_tsum
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
cantorFunctionAux_false
cantorFunctionAux_nonneg
cantorFunctionAux_true
summable_cantor_function
cantorFunction_succ πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Real.instOne
cantorFunction
Real.instAdd
Real.instMul
β€”cantorFunction.eq_1
Summable.tsum_eq_zero_add
instIsTopologicalAddGroupReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_cantor_function
cantorFunctionAux_succ
tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
cantorFunctionAux.eq_1
pow_zero
increasing_cantorFunction πŸ“–mathematicalReal
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
cantorFunctionβ€”Nat.instAtLeastTwoHAddOfNat
LT.lt.trans
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
LE.le.trans_lt
cantorFunction_le
le_of_lt
lt_of_lt_of_le
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_sub_iff_add_lt
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
cantorFunction_succ
div_eq_mul_inv
tsum_geometric_of_lt_one
zero_add
tsum_eq_single
SummationFilter.instLeAtTopUnconditional
cantorFunctionAux_false
cantorFunctionAux_zero
LT.lt.le
add_lt_add_right
mul_lt_mul_of_pos_left
instUncountableReal πŸ“–mathematicalβ€”Uncountable
Real
β€”aleph0_lt_mk_iff
mk_real
aleph0_lt_continuum
mk_Icc_real πŸ“–mathematicalReal
Real.instLT
Set.Elem
Set.Icc
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_le_mk_of_subset
Set.Ioo_subset_Icc_self
mk_Ioo_real
mk_Ici_real πŸ“–mathematicalβ€”Set.Elem
Real
Set.Ici
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_le_mk_of_subset
Set.Ioi_subset_Ici_self
mk_Ioi_real
mk_Ico_real πŸ“–mathematicalReal
Real.instLT
Set.Elem
Set.Ico
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_le_mk_of_subset
Set.Ioo_subset_Ico_self
mk_Ioo_real
mk_Iic_real πŸ“–mathematicalβ€”Set.Elem
Real
Set.Iic
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_le_mk_of_subset
Set.Iio_subset_Iic_self
mk_Iio_real
mk_Iio_real πŸ“–mathematicalβ€”Set.Elem
Real
Set.Iio
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
Set.image_const_sub_Iio
Real.instIsOrderedAddMonoid
add_sub_cancel_right
mk_image_le
mk_Ioi_real
mk_Ioc_real πŸ“–mathematicalReal
Real.instLT
Set.Elem
Set.Ioc
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_le_mk_of_subset
Set.Ioo_subset_Ioc_self
mk_Ioo_real
mk_Ioi_real πŸ“–mathematicalβ€”Set.Elem
Real
Set.Ioi
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
not_lt
ne_of_lt
Set.Iio_union_right
Set.Iic_union_Ioi
lt_imp_lt_of_le_of_le
mk_union_le
le_refl
add_le_add_left
addRightMono
Set.image_const_sub_Ioi
Real.instIsOrderedAddMonoid
add_sub_cancel_right
add_lt_of_lt
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
cantor
LE.le.trans_lt
mk_image_le
mk_singleton
LT.lt.trans
one_lt_aleph0
mk_univ_real
mk_Ioo_real πŸ“–mathematicalReal
Real.instLT
Set.Elem
Set.Ioo
Real.instPreorder
continuum
β€”le_antisymm
mk_set_le
mk_real
mk_image_le
le_trans
Set.image_sub_const_Ioo
Real.instIsOrderedAddMonoid
sub_self
sub_pos_of_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Set.image_inv_eq_inv
Set.inv_Ioo_0_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mk_Ioi_real
le_refl
mk_real πŸ“–mathematicalβ€”Real
continuum
β€”le_antisymm
Rat.instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
Equiv.cardinal_eq
LE.le.trans
mk_quotient_le
LE.le.trans_eq
mk_subtype_le
power_def
mk_nat
mkRat
aleph0_power_aleph0
Nat.instAtLeastTwoHAddOfNat
mk_bool
two_power_aleph0
mk_le_of_injective
cantorFunction_injective
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.instAtLeastTwo
mk_univ_real πŸ“–mathematicalβ€”Set.Elem
Real
Set.univ
continuum
β€”mk_univ
mk_real
not_countable_real πŸ“–mathematicalβ€”Set.Countable
Real
Set.univ
β€”Set.not_countable_univ
instUncountableReal
summable_cantor_function πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cantorFunctionAux
SummationFilter.unconditional
β€”Summable.summable_of_eq_zero_or_self
instIsUniformAddGroupReal
Real.instCompleteSpace
summable_geometric_of_lt_one
cantorFunctionAux_false
cantorFunctionAux_true
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Real.instNontrivial

Cardinal.Real

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_countable_iff πŸ“–mathematicalβ€”Set.Countable
Real
Set.Icc
Real.instPreorder
Real.instLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
Cardinal.le_aleph0_iff_set_countable
Cardinal.mk_Icc_real
not_le
Cardinal.aleph0_lt_continuum
le_iff_eq_or_lt
Set.Icc_self
Set.Icc_eq_empty
Ico_countable_iff πŸ“–mathematicalβ€”Set.Countable
Real
Set.Ico
Real.instPreorder
Real.instLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
Cardinal.le_aleph0_iff_set_countable
Cardinal.mk_Ico_real
not_le
Cardinal.aleph0_lt_continuum
Set.Ico_eq_empty
Ioc_countable_iff πŸ“–mathematicalβ€”Set.Countable
Real
Set.Ioc
Real.instPreorder
Real.instLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
Cardinal.le_aleph0_iff_set_countable
Cardinal.mk_Ioc_real
not_le
Cardinal.aleph0_lt_continuum
Set.Ioc_eq_empty
Ioo_countable_iff πŸ“–mathematicalβ€”Set.Countable
Real
Set.Ioo
Real.instPreorder
Real.instLE
β€”Mathlib.Tactic.Contrapose.contrapose₁
Cardinal.le_aleph0_iff_set_countable
Cardinal.mk_Ioo_real
not_le
Cardinal.aleph0_lt_continuum
Set.Ioo_eq_empty

---

← Back to Index