Documentation Verification Report

Hyperreal

πŸ“ Source: Mathlib/Analysis/Real/Hyperreal.lean

Statistics

MetricCount
DefinitionsInfiniteNeg, InfinitePos, Infinitesimal, IsSt, coeRingHom, epsilon, instCoeTCReal, instField, instLinearOrder, ofReal, ofSeq, omega, st, termΞ΅, termΟ‰, Β«termℝ*Β»
16
Theoremsmul, ne_real, ne_zero, not_infinitesimal, st_eq, lt_zero, neg, not_infinitePos, not_infinitesimal, neg, not_infiniteNeg, not_infinitesimal, pos, add, eq_zero, mul, neg, not_infinite, add, infinitesimal_sub, inv, isSt_st, le, lt, map, mapβ‚‚, mul, neg, not_infinite, st_eq, sub, unique, abs_lt_real_iff_infinitesimal, abs_omega, archimdeanClassMk_coe, archimedeanClassMk_coe_nonneg, archimedeanClassMk_epsilon_pos, archimedeanClassMk_neg_of_tendsto_atBot, archimedeanClassMk_neg_of_tendsto_atTop, archimedeanClassMk_nonneg_of_tendsto, archimedeanClassMk_omega_neg, archimedeanClassMk_pos_of_tendsto, coeRingHom_toFun, coe_abs, coe_add, coe_div, coe_eq_coe, coe_eq_one, coe_eq_zero, coe_inv, coe_le_coe, coe_lt_coe, coe_lt_omega, coe_max, coe_min, coe_mul, coe_ne_coe, coe_ne_one, coe_ne_zero, coe_neg, coe_nonneg, coe_ofNat, coe_one, coe_pos, coe_sub, coe_zero, epsilon_lt_of_neg, epsilon_lt_of_pos, epsilon_lt_pos, epsilon_mul_omega, epsilon_ne_zero, epsilon_pos, eq_of_isSt_real, exists_st_iff_not_infinite, exists_st_of_not_infinite, gt_of_neg_of_infinitesimal, gt_of_tendsto_zero_of_neg, infiniteNeg_add_infiniteNeg, infiniteNeg_add_not_infinite, infiniteNeg_add_not_infinitePos, infiniteNeg_def, infiniteNeg_iff_infinite_and_neg, infiniteNeg_iff_infinite_of_neg, infiniteNeg_iff_infinitesimal_inv_neg, infiniteNeg_mul_infiniteNeg, infiniteNeg_mul_infinitePos, infiniteNeg_mul_of_infiniteNeg_not_infinitesimal_pos, infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg, infiniteNeg_mul_of_not_infinitesimal_neg_infinitePos, infiniteNeg_mul_of_not_infinitesimal_pos_infiniteNeg, infiniteNeg_neg, infiniteNeg_of_tendsto_bot, infinitePos_abs_iff_infinite, infinitePos_abs_iff_infinite_abs, infinitePos_add_infinitePos, infinitePos_add_not_infinite, infinitePos_add_not_infiniteNeg, infinitePos_def, infinitePos_iff_infinite_and_pos, infinitePos_iff_infinite_of_nonneg, infinitePos_iff_infinite_of_pos, infinitePos_iff_infinitesimal_inv_pos, infinitePos_mul_infiniteNeg, infinitePos_mul_infinitePos, infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg, infinitePos_mul_of_infinitePos_not_infinitesimal_pos, infinitePos_mul_of_not_infinitesimal_neg_infiniteNeg, infinitePos_mul_of_not_infinitesimal_pos_infinitePos, infinitePos_neg, infinitePos_of_tendsto_top, infinitePos_omega, infinite_abs_iff, infinite_iff_abs_lt_abs, infinite_iff_infinitesimal_inv, infinite_iff_not_exists_st, infinite_mul_of_infinite_not_infinitesimal, infinite_mul_of_not_infinitesimal_infinite, infinite_neg, infinite_of_infinitesimal_inv, infinite_omega, infinitesimal_def, infinitesimal_epsilon, infinitesimal_iff_infinite_inv, infinitesimal_inv_of_infinite, infinitesimal_neg, infinitesimal_neg_iff_infiniteNeg_inv, infinitesimal_of_tendsto_zero, infinitesimal_pos_iff_infinitePos_inv, infinitesimal_real_iff, infinitesimal_sub_st, infinitesimal_zero, instIsStrictOrderedRing, inv_epsilon, inv_omega, isSt_iff_abs_sub_lt_delta, isSt_iff_tendsto, isSt_inj_real, isSt_ofSeq_iff_tendsto, isSt_of_tendsto, isSt_real_iff_eq, isSt_refl_real, isSt_sSup, isSt_st, isSt_st', isSt_st_of_exists_st, isSt_symm_real, isSt_trans_real, lt_neg_of_pos_of_infinitesimal, lt_of_pos_of_infinitesimal, lt_of_st_lt, lt_of_tendsto_atBot, lt_of_tendsto_atTop, lt_of_tendsto_zero_of_pos, neg_lt_of_tendsto_zero_of_pos, not_infiniteNeg_add_infinitePos, not_infinitePos_add_infiniteNeg, not_infinite_add, not_infinite_iff_exist_lt_gt, not_infinite_mul, not_infinite_neg, not_infinite_of_exists_st, not_infinite_real, not_infinite_zero, not_real_of_infinitesimal_ne_zero, ofSeq_le_ofSeq, ofSeq_lt_ofSeq, ofSeq_surjective, omega_ne_zero, omega_pos, st_add, st_eq_sSup, st_id_real, st_inv, st_le_of_le, st_mul, st_neg, stdPart_coe, stdPart_epsilon, stdPart_of_tendsto, stdPart_omega, tendsto_atBot_iff, tendsto_atTop_iff, tendsto_iff_forall, tendsto_ofSeq
184
Total200

Hyperreal

Definitions

NameCategoryTheorems
InfiniteNeg πŸ“–MathDef
12 mathmath: infiniteNeg_of_tendsto_bot, InfinitePos.neg, infinitePos_neg, infiniteNeg_iff_infinite_and_neg, InfinitePos.not_infiniteNeg, infinitesimal_neg_iff_infiniteNeg_inv, infiniteNeg_def, infiniteNeg_iff_infinite_of_neg, infiniteNeg_iff_infinitesimal_inv_neg, infiniteNeg_neg, infiniteNeg_mul_of_not_infinitesimal_neg_infinitePos, infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg
InfinitePos πŸ“–MathDef
17 mathmath: InfiniteNeg.neg, infinitePos_of_tendsto_top, infinitePos_omega, infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg, infinitePos_neg, infinitePos_iff_infinite_and_pos, infiniteNeg_mul_infiniteNeg, infinitePos_iff_infinitesimal_inv_pos, infinitePos_abs_iff_infinite_abs, infinitePos_iff_infinite_of_pos, infinitePos_iff_infinite_of_nonneg, infiniteNeg_neg, infinitePos_def, infinitesimal_pos_iff_infinitePos_inv, infinitePos_mul_of_not_infinitesimal_neg_infiniteNeg, infinitePos_abs_iff_infinite, InfiniteNeg.not_infinitePos
Infinitesimal πŸ“–MathDef
19 mathmath: InfiniteNeg.not_infinitesimal, infinitesimal_def, infinitesimal_inv_of_infinite, infinite_iff_infinitesimal_inv, InfinitePos.not_infinitesimal, infinitePos_iff_infinitesimal_inv_pos, infinitesimal_sub_st, infinitesimal_of_tendsto_zero, infinitesimal_neg_iff_infiniteNeg_inv, infinitesimal_iff_infinite_inv, infinitesimal_real_iff, infiniteNeg_iff_infinitesimal_inv_neg, infinitesimal_epsilon, infinitesimal_zero, infinitesimal_neg, abs_lt_real_iff_infinitesimal, infinitesimal_pos_iff_infinitePos_inv, Infinite.not_infinitesimal, IsSt.infinitesimal_sub
IsSt πŸ“–MathDef
13 mathmath: isSt_symm_real, isSt_iff_abs_sub_lt_delta, isSt_sSup, isSt_st, exists_st_iff_not_infinite, isSt_refl_real, infinite_iff_not_exists_st, isSt_of_tendsto, isSt_real_iff_eq, isSt_iff_tendsto, exists_st_of_not_infinite, isSt_st', isSt_ofSeq_iff_tendsto
coeRingHom πŸ“–CompOp
1 mathmath: coeRingHom_toFun
epsilon πŸ“–CompOp
10 mathmath: epsilon_lt_of_pos, epsilon_mul_omega, inv_omega, epsilon_lt_pos, inv_epsilon, epsilon_lt_of_neg, infinitesimal_epsilon, stdPart_epsilon, epsilon_pos, archimedeanClassMk_epsilon_pos
instCoeTCReal πŸ“–CompOpβ€”
instField πŸ“–CompOp
96 mathmath: InfiniteNeg.neg, infinitePos_add_not_infiniteNeg, infinite_neg, not_infinite_zero, neg_lt_of_tendsto_zero_of_pos, not_infiniteNeg_add_infinitePos, epsilon_mul_omega, not_infinitePos_add_infiniteNeg, coe_ofNat, InfinitePos.neg, infinitesimal_def, Infinitesimal.add, InfiniteNeg.lt_zero, Infinite.mul, infinitePos_add_not_infinite, infinitesimal_inv_of_infinite, infinite_abs_iff, infinite_mul_of_not_infinitesimal_infinite, archimdeanClassMk_coe, inv_omega, infinite_iff_infinitesimal_inv, infinitePos_neg, isSt_iff_abs_sub_lt_delta, archimedeanClassMk_neg_of_tendsto_atBot, coe_eq_one, st_mul, stdPart_coe, infinitePos_iff_infinite_and_pos, coe_nonneg, infiniteNeg_mul_infiniteNeg, infinitePos_iff_infinitesimal_inv_pos, coe_pos, archimedeanClassMk_neg_of_tendsto_atTop, IsSt.add, infiniteNeg_iff_infinite_and_neg, archimedeanClassMk_pos_of_tendsto, infinitesimal_sub_st, infinitePos_abs_iff_infinite_abs, inv_epsilon, archimedeanClassMk_nonneg_of_tendsto, IsSt.mul, IsSt.inv, infinitePos_mul_infiniteNeg, coe_inv, infinitesimal_neg_iff_infiniteNeg_inv, infiniteNeg_mul_infinitePos, IsSt.sub, Infinitesimal.mul, instIsStrictOrderedRing, coe_eq_zero, coe_zero, lt_neg_of_pos_of_infinitesimal, infinitesimal_iff_infinite_inv, not_infinite_neg, infiniteNeg_add_infiniteNeg, not_infinite_add, coe_one, infinite_mul_of_infinite_not_infinitesimal, infinite_iff_abs_lt_abs, omega_pos, coe_add, infiniteNeg_iff_infinitesimal_inv_neg, archimedeanClassMk_omega_neg, archimedeanClassMk_coe_nonneg, tendsto_atBot_iff, not_infinite_mul, stdPart_of_tendsto, infinitesimal_zero, coe_div, infiniteNeg_neg, coe_abs, st_inv, abs_omega, InfinitePos.pos, infinitesimal_neg, coe_neg, stdPart_omega, abs_lt_real_iff_infinitesimal, infinitesimal_pos_iff_infinitePos_inv, coe_mul, infiniteNeg_add_not_infinitePos, infinitePos_add_infinitePos, infinitePos_abs_iff_infinite, IsSt.neg, infinitePos_mul_infinitePos, stdPart_epsilon, st_neg, st_add, coe_sub, infiniteNeg_add_not_infinite, epsilon_pos, archimedeanClassMk_epsilon_pos, IsSt.infinitesimal_sub, tendsto_atTop_iff, Infinitesimal.neg, coeRingHom_toFun
instLinearOrder πŸ“–CompOp
63 mathmath: epsilon_lt_of_pos, neg_lt_of_tendsto_zero_of_pos, infinitesimal_def, coe_lt_omega, InfiniteNeg.lt_zero, infinite_abs_iff, not_infinite_iff_exist_lt_gt, archimdeanClassMk_coe, tendsto_iff_forall, isSt_iff_abs_sub_lt_delta, archimedeanClassMk_neg_of_tendsto_atBot, isSt_sSup, stdPart_coe, infinitePos_iff_infinite_and_pos, epsilon_lt_pos, coe_nonneg, infinitePos_iff_infinitesimal_inv_pos, coe_pos, archimedeanClassMk_neg_of_tendsto_atTop, infiniteNeg_iff_infinite_and_neg, lt_of_tendsto_atTop, archimedeanClassMk_pos_of_tendsto, infinitePos_abs_iff_infinite_abs, archimedeanClassMk_nonneg_of_tendsto, epsilon_lt_of_neg, infinitesimal_neg_iff_infiniteNeg_inv, infiniteNeg_def, instIsStrictOrderedRing, coe_min, lt_neg_of_pos_of_infinitesimal, lt_of_pos_of_infinitesimal, lt_of_tendsto_atBot, infinite_iff_abs_lt_abs, ofSeq_le_ofSeq, omega_pos, infiniteNeg_iff_infinitesimal_inv_neg, archimedeanClassMk_omega_neg, archimedeanClassMk_coe_nonneg, tendsto_atBot_iff, lt_of_tendsto_zero_of_pos, coe_max, stdPart_of_tendsto, lt_of_st_lt, coe_abs, IsSt.lt, abs_omega, InfinitePos.pos, infinitePos_def, stdPart_omega, abs_lt_real_iff_infinitesimal, infinitesimal_pos_iff_infinitePos_inv, coe_le_coe, coe_lt_coe, st_eq_sSup, infinitePos_abs_iff_infinite, stdPart_epsilon, ofSeq_lt_ofSeq, gt_of_neg_of_infinitesimal, gt_of_tendsto_zero_of_neg, epsilon_pos, archimedeanClassMk_epsilon_pos, tendsto_atTop_iff, coeRingHom_toFun
ofReal πŸ“–CompOp
53 mathmath: epsilon_lt_of_pos, neg_lt_of_tendsto_zero_of_pos, coe_eq_coe, coe_ofNat, infinitesimal_def, coe_lt_omega, isSt_symm_real, not_infinite_iff_exist_lt_gt, archimdeanClassMk_coe, tendsto_iff_forall, isSt_iff_abs_sub_lt_delta, isSt_sSup, coe_eq_one, stdPart_coe, epsilon_lt_pos, coe_nonneg, coe_pos, lt_of_tendsto_atTop, infinitesimal_sub_st, epsilon_lt_of_neg, isSt_refl_real, coe_inv, st_id_real, infiniteNeg_def, coe_eq_zero, coe_zero, coe_min, lt_neg_of_pos_of_infinitesimal, lt_of_pos_of_infinitesimal, coe_one, infinitesimal_real_iff, lt_of_tendsto_atBot, infinite_iff_abs_lt_abs, coe_add, archimedeanClassMk_coe_nonneg, lt_of_tendsto_zero_of_pos, coe_max, coe_div, isSt_real_iff_eq, coe_abs, not_infinite_real, infinitePos_def, coe_neg, abs_lt_real_iff_infinitesimal, coe_mul, coe_le_coe, coe_lt_coe, st_eq_sSup, gt_of_neg_of_infinitesimal, coe_sub, gt_of_tendsto_zero_of_neg, IsSt.infinitesimal_sub, coeRingHom_toFun
ofSeq πŸ“–CompOp
12 mathmath: infiniteNeg_of_tendsto_bot, infinitePos_of_tendsto_top, neg_lt_of_tendsto_zero_of_pos, infinitesimal_of_tendsto_zero, ofSeq_surjective, ofSeq_le_ofSeq, isSt_of_tendsto, lt_of_tendsto_zero_of_pos, tendsto_ofSeq, ofSeq_lt_ofSeq, isSt_ofSeq_iff_tendsto, gt_of_tendsto_zero_of_neg
omega πŸ“–CompOp
10 mathmath: infinitePos_omega, epsilon_mul_omega, coe_lt_omega, inv_omega, inv_epsilon, infinite_omega, omega_pos, archimedeanClassMk_omega_neg, abs_omega, stdPart_omega
st πŸ“–CompOp
14 mathmath: IsSt.st_eq, isSt_st, st_mul, Infinite.st_eq, infinitesimal_sub_st, st_id_real, IsSt.isSt_st, st_le_of_le, isSt_st_of_exists_st, st_inv, isSt_st', st_eq_sSup, st_neg, st_add
termΞ΅ πŸ“–CompOpβ€”
termΟ‰ πŸ“–CompOpβ€”
Β«termℝ*Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abs_lt_real_iff_infinitesimal πŸ“–mathematicalβ€”Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
β€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
covariant_swap_add_of_covariant_add
infinitesimal_def
abs_pos
Real.instIsOrderedAddMonoid
coe_abs
abs_of_pos
coe_pos
LT.lt.ne'
abs_omega πŸ“–mathematicalβ€”abs
Hyperreal
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
omega
β€”abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
omega_pos
archimdeanClassMk_coe πŸ“–mathematicalβ€”Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
ofReal
ArchimedeanClass
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”ArchimedeanClass.mk_map_of_archimedean'
instIsStrictOrderedRing
Real.instIsStrictOrderedRing
Real.instArchimedean
archimedeanClassMk_coe_nonneg πŸ“–mathematicalβ€”ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ofReal
β€”ArchimedeanClass.mk_map_nonneg_of_archimedean
instIsStrictOrderedRing
Real.instIsStrictOrderedRing
Real.instArchimedean
archimedeanClassMk_epsilon_pos πŸ“–mathematicalβ€”ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
epsilon
β€”IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
archimedeanClassMk_omega_neg
archimedeanClassMk_neg_of_tendsto_atBot πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atBot
Real.instPreorder
ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”instInfiniteNat
lt_of_tendsto_atBot
abs_one
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
nsmul_eq_mul
mul_one
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
archimedeanClassMk_neg_of_tendsto_atTop πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atTop
Real.instPreorder
ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”instInfiniteNat
lt_of_tendsto_atTop
abs_one
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
nsmul_eq_mul
mul_one
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
archimedeanClassMk_nonneg_of_tendsto πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLE
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”instInfiniteNat
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
NoMinOrder.exists_lt
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
NoMaxOrder.exists_gt
instNoMaxOrderOfNontrivial
ArchimedeanClass.mk_nonneg_of_le_of_le_of_archimedean
Real.instIsStrictOrderedRing
Real.instArchimedean
tendsto_iff_forall
archimedeanClassMk_omega_neg πŸ“–mathematicalβ€”ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
omega
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”abs_one
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
nsmul_eq_mul
mul_one
abs_omega
coe_lt_omega
archimedeanClassMk_pos_of_tendsto πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
ArchimedeanClass
Hyperreal
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
instLinearOrder
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
Preorder.toLT
PartialOrder.toPreorder
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”instInfiniteNat
LE.le.lt_of_ne'
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
archimedeanClassMk_nonneg_of_tendsto
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ArchimedeanClass.stdPart_eq_zero
stdPart_of_tendsto
coeRingHom_toFun πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Real
Hyperreal
Semiring.toNonAssocSemiring
Real.semiring
Real.instPreorder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
OrderRingHom.instFunLike
coeRingHom
ofReal
β€”instInfiniteNat
coe_abs πŸ“–mathematicalβ€”ofReal
abs
Real
Real.lattice
Real.instAddGroup
Hyperreal
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”Filter.Germ.const_abs
instInfiniteNat
coe_add πŸ“–mathematicalβ€”ofReal
Real
Real.instAdd
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”β€”
coe_div πŸ“–mathematicalβ€”ofReal
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Hyperreal
DivisionRing.toDivInvMonoid
Field.toDivisionRing
instField
β€”β€”
coe_eq_coe πŸ“–mathematicalβ€”ofRealβ€”instInfiniteNat
Ultrafilter.neBot
coe_eq_one πŸ“–mathematicalβ€”ofReal
Hyperreal
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Real
Real.instOne
β€”coe_eq_coe
coe_eq_zero πŸ“–mathematicalβ€”ofReal
Hyperreal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
Real
Real.instZero
β€”coe_eq_coe
coe_inv πŸ“–mathematicalβ€”ofReal
Real
Real.instInv
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
β€”β€”
coe_le_coe πŸ“–mathematicalβ€”Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
Real
Real.instLE
β€”Filter.Germ.const_le_iff
instInfiniteNat
Ultrafilter.neBot
coe_lt_coe πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
Real
Real.instLT
β€”Filter.Germ.const_lt_iff
instInfiniteNat
coe_lt_omega πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
omega
β€”instInfiniteNat
ofSeq_lt_ofSeq
Filter.Eventually.filter_mono
Nat.hyperfilter_le_atTop
exists_nat_gt
Real.instIsStrictOrderedRing
Real.instArchimedean
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LT.lt.trans_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
coe_max πŸ“–mathematicalβ€”ofReal
Real
Real.instMax
Hyperreal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Filter.Germ.const_max
instInfiniteNat
coe_min πŸ“–mathematicalβ€”ofReal
Real
Real.instMin
Hyperreal
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”Filter.Germ.const_min
instInfiniteNat
coe_mul πŸ“–mathematicalβ€”ofReal
Real
Real.instMul
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”β€”
coe_ne_coe πŸ“–β€”β€”β€”β€”Iff.not
coe_eq_coe
coe_ne_one πŸ“–β€”β€”β€”β€”coe_ne_coe
coe_ne_zero πŸ“–β€”β€”β€”β€”coe_ne_coe
coe_neg πŸ“–mathematicalβ€”ofReal
Real
Real.instNeg
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
β€”β€”
coe_nonneg πŸ“–mathematicalβ€”Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
ofReal
Real
Real.instLE
Real.instZero
β€”coe_le_coe
coe_ofNat πŸ“–mathematicalβ€”ofReal
Hyperreal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”β€”
coe_one πŸ“–mathematicalβ€”ofReal
Real
Real.instOne
Hyperreal
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”β€”
coe_pos πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
ofReal
Real
Real.instLT
Real.instZero
β€”coe_lt_coe
coe_sub πŸ“–mathematicalβ€”ofReal
Real
Real.instSub
Hyperreal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”β€”
coe_zero πŸ“–mathematicalβ€”ofReal
Real
Real.instZero
Hyperreal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”β€”
epsilon_lt_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
epsilon
β€”ArchimedeanClass.lt_of_neg_of_archimedean
instIsStrictOrderedRing
Real.instIsStrictOrderedRing
Real.instArchimedean
archimedeanClassMk_epsilon_pos
epsilon_lt_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
epsilon
ofReal
β€”ArchimedeanClass.lt_of_pos_of_archimedean
instIsStrictOrderedRing
Real.instIsStrictOrderedRing
Real.instArchimedean
archimedeanClassMk_epsilon_pos
epsilon_lt_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
epsilon
ofReal
β€”epsilon_lt_of_pos
epsilon_mul_omega πŸ“–mathematicalβ€”Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
epsilon
omega
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”inv_mul_cancelβ‚€
omega_ne_zero
epsilon_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
epsilon_pos
epsilon_pos πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
epsilon
β€”inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
omega_pos
eq_of_isSt_real πŸ“–β€”IsSt
ofReal
β€”β€”IsSt.unique
isSt_refl_real
exists_st_iff_not_infinite πŸ“–mathematicalβ€”IsSt
Infinite
β€”not_infinite_of_exists_st
exists_st_of_not_infinite
exists_st_of_not_infinite πŸ“–mathematicalInfiniteIsStβ€”isSt_sSup
gt_of_neg_of_infinitesimal πŸ“–mathematicalInfinitesimal
Real
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”infinitesimal_def
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
neg_neg
gt_of_tendsto_zero_of_neg πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLT
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
ofSeq
β€”neg_neg
coe_neg
neg_lt_of_tendsto_zero_of_pos
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
infiniteNeg_add_infiniteNeg πŸ“–mathematicalInfiniteNegHyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infiniteNeg_add_not_infinitePos
InfiniteNeg.not_infinitePos
infiniteNeg_add_not_infinite πŸ“–mathematicalInfiniteNeg
Infinite
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infiniteNeg_add_not_infinitePos
infiniteNeg_add_not_infinitePos πŸ“–mathematicalInfiniteNeg
InfinitePos
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_neg
infiniteNeg_neg
neg_add
infinitePos_add_not_infiniteNeg
infiniteNeg_def πŸ“–mathematicalβ€”InfiniteNeg
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”β€”
infiniteNeg_iff_infinite_and_neg πŸ“–mathematicalβ€”InfiniteNeg
Infinite
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”not_lt_of_gt
infiniteNeg_iff_infinite_of_neg πŸ“–mathematicalHyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfiniteNeg
Infinite
β€”LT.lt.not_gt
InfinitePos.pos
infiniteNeg_iff_infinitesimal_inv_neg πŸ“–mathematicalβ€”InfiniteNeg
Infinitesimal
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”infinitePos_neg
infinitePos_iff_infinitesimal_inv_pos
inv_neg
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
infinitesimal_neg
infiniteNeg_mul_infiniteNeg πŸ“–mathematicalInfiniteNegInfinitePos
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg
InfiniteNeg.not_infinitesimal
infiniteNeg_mul_infinitePos πŸ“–mathematicalInfiniteNeg
InfinitePos
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infiniteNeg_mul_of_infiniteNeg_not_infinitesimal_pos
InfinitePos.not_infinitesimal
infiniteNeg_mul_of_infiniteNeg_not_infinitesimal_pos πŸ“–mathematicalInfiniteNeg
Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitePos_neg
neg_mul_eq_neg_mul
infinitePos_mul_of_infinitePos_not_infinitesimal_pos
infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg πŸ“–mathematicalInfinitePos
Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfiniteNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitePos_neg
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
neg_mul_eq_mul_neg
infinitesimal_neg
infinitePos_mul_of_infinitePos_not_infinitesimal_pos
infiniteNeg_mul_of_not_infinitesimal_neg_infinitePos πŸ“–mathematicalInfinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfinitePos
InfiniteNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg
mul_comm
infiniteNeg_mul_of_not_infinitesimal_pos_infiniteNeg πŸ“–mathematicalInfinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfiniteNeg
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_comm
infiniteNeg_mul_of_infiniteNeg_not_infinitesimal_pos
infiniteNeg_neg πŸ“–mathematicalβ€”InfiniteNeg
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
InfinitePos
β€”InfiniteNeg.neg
neg_neg
InfinitePos.neg
infiniteNeg_of_tendsto_bot πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
Filter.atBot
Real.instPreorder
InfiniteNeg
ofSeq
β€”Filter.tendsto_atTop_atBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lt_imp_lt_of_le_imp_le
le_of_lt
lt_of_lt_of_le
sub_one_lt
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
instInfiniteNat
Filter.Germ.coe_lt
Filter.mem_hyperfilter_of_finite_compl
Set.Finite.subset
Set.finite_le_nat
infinitePos_abs_iff_infinite πŸ“–mathematicalβ€”InfinitePos
abs
Hyperreal
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Infinite
β€”infinitePos_abs_iff_infinite_abs
infinite_abs_iff
infinitePos_abs_iff_infinite_abs πŸ“–mathematicalβ€”InfinitePos
abs
Hyperreal
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
Infinite
β€”infinitePos_iff_infinite_of_nonneg
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
covariant_swap_add_of_covariant_add
infinitePos_add_infinitePos πŸ“–mathematicalInfinitePosHyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_add_not_infiniteNeg
InfinitePos.not_infiniteNeg
infinitePos_add_not_infinite πŸ“–mathematicalInfinitePos
Infinite
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_add_not_infiniteNeg
infinitePos_add_not_infiniteNeg πŸ“–mathematicalInfinitePos
InfiniteNeg
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”neg_add_cancel_right
add_lt_add_of_lt_of_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
not_lt
infinitePos_def πŸ“–mathematicalβ€”InfinitePos
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”β€”
infinitePos_iff_infinite_and_pos πŸ“–mathematicalβ€”InfinitePos
Infinite
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”not_lt_of_gt
infinitePos_iff_infinite_of_nonneg πŸ“–mathematicalHyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfinitePos
Infinite
β€”LT.lt.not_ge
InfiniteNeg.lt_zero
infinitePos_iff_infinite_of_pos πŸ“–mathematicalHyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfinitePos
Infinite
β€”infinitePos_iff_infinite_of_nonneg
LT.lt.le
infinitePos_iff_infinitesimal_inv_pos πŸ“–mathematicalβ€”InfinitePos
Infinitesimal
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”infinitesimal_def
lt_trans
coe_lt_coe
neg_neg_of_pos
Real.instIsOrderedAddMonoid
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
inv_lt_of_inv_ltβ‚€
instInfiniteNat
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
by_cases
lt_of_le_of_lt
coe_le_coe
le_abs_self
inv_lt_invβ‚€
abs_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsStrictOrderedRing
infinitePos_mul_infiniteNeg πŸ“–mathematicalInfinitePos
InfiniteNeg
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg
InfiniteNeg.not_infinitesimal
infinitePos_mul_infinitePos πŸ“–mathematicalInfinitePosHyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_mul_of_infinitePos_not_infinitesimal_pos
InfinitePos.not_infinitesimal
infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg πŸ“–mathematicalInfiniteNeg
Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfinitePos
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitePos_neg
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
neg_mul_neg
infinitesimal_neg
infinitePos_mul_of_infinitePos_not_infinitesimal_pos
infinitePos_mul_of_infinitePos_not_infinitesimal_pos πŸ“–mathematicalInfinitePos
Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitesimal_def
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
not_lt
abs_lt
covariant_swap_add_of_covariant_add
div_mul_cancelβ‚€
ne_of_gt
coe_mul
mul_lt_mul
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toMulPosStrictMono
coe_lt_coe
le_of_lt
infinitePos_mul_of_not_infinitesimal_neg_infiniteNeg πŸ“–mathematicalInfinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfiniteNeg
InfinitePos
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg
mul_comm
infinitePos_mul_of_not_infinitesimal_pos_infinitePos πŸ“–mathematicalInfinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
InfinitePos
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”infinitePos_mul_of_infinitePos_not_infinitesimal_pos
mul_comm
infinitePos_neg πŸ“–mathematicalβ€”InfinitePos
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
InfiniteNeg
β€”InfinitePos.neg
neg_neg
InfiniteNeg.neg
infinitePos_of_tendsto_top πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
Real.instPreorder
InfinitePos
ofSeq
β€”Filter.tendsto_atTop_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lt_imp_lt_of_le_imp_le
le_of_lt
lt_of_le_of_lt
lt_add_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
instInfiniteNat
Filter.Germ.coe_lt
Filter.mem_hyperfilter_of_finite_compl
Set.Finite.subset
Set.finite_le_nat
infinitePos_omega πŸ“–mathematicalβ€”InfinitePos
omega
β€”infinitePos_iff_infinitesimal_inv_pos
infinitesimal_epsilon
epsilon_pos
infinite_abs_iff πŸ“–mathematicalβ€”Infinite
abs
Hyperreal
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”le_total
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
abs_of_nonpos
infinite_iff_abs_lt_abs πŸ“–mathematicalβ€”Infinite
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
β€”infinitePos_abs_iff_infinite
coe_abs
LE.le.trans_lt
le_abs_self
infinite_iff_infinitesimal_inv πŸ“–mathematicalβ€”Infinite
Infinitesimal
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
β€”infinitesimal_inv_of_infinite
infinite_of_infinitesimal_inv
infinite_iff_not_exists_st πŸ“–mathematicalβ€”Infinite
IsSt
β€”iff_not_comm
exists_st_iff_not_infinite
infinite_mul_of_infinite_not_infinitesimal πŸ“–mathematicalInfinite
Infinitesimal
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”lt_or_gt_of_ne
isSt_refl_real
infiniteNeg_mul_of_infinitePos_not_infinitesimal_neg
infinitePos_mul_of_infinitePos_not_infinitesimal_pos
infinitePos_mul_of_infiniteNeg_not_infinitesimal_neg
infiniteNeg_mul_of_infiniteNeg_not_infinitesimal_pos
infinite_mul_of_not_infinitesimal_infinite πŸ“–mathematicalInfinitesimal
Infinite
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”mul_comm
infinite_mul_of_infinite_not_infinitesimal
infinite_neg πŸ“–mathematicalβ€”Infinite
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
β€”Iff.or
infiniteNeg_neg
infinitePos_neg
infinite_of_infinitesimal_inv πŸ“–mathematicalInfinitesimal
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Infiniteβ€”lt_or_gt_of_ne
infiniteNeg_iff_infinitesimal_inv_neg
instInfiniteNat
inv_lt_zero
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
infinitePos_iff_infinitesimal_inv_pos
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
infinite_omega πŸ“–mathematicalβ€”Infinite
omega
β€”infinite_iff_infinitesimal_inv
omega_ne_zero
infinitesimal_epsilon
infinitesimal_def πŸ“–mathematicalβ€”Infinitesimal
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
β€”zero_sub
zero_add
infinitesimal_epsilon πŸ“–mathematicalβ€”Infinitesimal
epsilon
β€”infinitesimal_of_tendsto_zero
tendsto_inv_atTop_nhds_zero_nat
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
infinitesimal_iff_infinite_inv πŸ“–mathematicalβ€”Infinitesimal
Infinite
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
β€”inv_inv
infinite_iff_infinitesimal_inv
inv_ne_zero
infinitesimal_inv_of_infinite πŸ“–mathematicalInfiniteInfinitesimal
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
β€”infinitePos_iff_infinitesimal_inv_pos
infiniteNeg_iff_infinitesimal_inv_neg
infinitesimal_neg πŸ“–mathematicalβ€”Infinitesimal
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
β€”Infinitesimal.neg
neg_neg
infinitesimal_neg_iff_infiniteNeg_inv πŸ“–mathematicalβ€”InfiniteNeg
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Infinitesimal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”infiniteNeg_iff_infinitesimal_inv_neg
inv_inv
infinitesimal_of_tendsto_zero πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Infinitesimal
ofSeq
β€”isSt_of_tendsto
infinitesimal_pos_iff_infinitePos_inv πŸ“–mathematicalβ€”InfinitePos
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Infinitesimal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”infinitePos_iff_infinitesimal_inv_pos
inv_inv
infinitesimal_real_iff πŸ“–mathematicalβ€”Infinitesimal
ofReal
Real
Real.instZero
β€”isSt_real_iff_eq
infinitesimal_sub_st πŸ“–mathematicalInfiniteInfinitesimal
Hyperreal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
st
β€”IsSt.infinitesimal_sub
isSt_st'
infinitesimal_zero πŸ“–mathematicalβ€”Infinitesimal
Hyperreal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”isSt_refl_real
instIsStrictOrderedRing πŸ“–mathematicalβ€”IsStrictOrderedRing
Hyperreal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”instInfiniteNat
Filter.Germ.instIsStrictOrderedRing
Real.instIsStrictOrderedRing
inv_epsilon πŸ“–mathematicalβ€”Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
epsilon
omega
β€”inv_inv
inv_omega πŸ“–mathematicalβ€”Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
omega
epsilon
β€”β€”
isSt_iff_abs_sub_lt_delta πŸ“–mathematicalβ€”IsSt
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
ofReal
β€”IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
add_comm
isSt_iff_tendsto πŸ“–mathematicalβ€”IsSt
Filter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”instInfiniteNat
ofSeq_surjective
isSt_ofSeq_iff_tendsto
isSt_inj_real πŸ“–β€”IsSt
ofReal
β€”β€”eq_of_isSt_real
isSt_ofSeq_iff_tendsto πŸ“–mathematicalβ€”IsSt
ofSeq
Filter.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”instInfiniteNat
Iff.and
ofSeq_lt_ofSeq
Filter.eventually_and
Filter.HasBasis.tendsto_right_iff
nhds_basis_Ioo_pos
Real.instIsOrderedAddMonoid
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
isSt_of_tendsto πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
IsSt
ofSeq
β€”instInfiniteNat
isSt_ofSeq_iff_tendsto
Filter.Tendsto.mono_left
Nat.hyperfilter_le_atTop
isSt_real_iff_eq πŸ“–mathematicalβ€”IsSt
ofReal
β€”eq_of_isSt_real
isSt_refl_real
isSt_refl_real πŸ“–mathematicalβ€”IsSt
ofReal
β€”instInfiniteNat
isSt_ofSeq_iff_tendsto
tendsto_const_nhds
isSt_sSup πŸ“–mathematicalInfiniteIsSt
SupSet.sSup
Real
Real.instSupSet
setOf
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”LT.lt.trans_le
coe_lt_coe
sub_one_lt
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
not_lt
coe_le_coe
LE.le.trans
LT.lt.le
lt_of_not_ge
LT.lt.not_ge
sub_lt_self
csSup_le
Nat.instAtLeastTwoHAddOfNat
lt_imp_lt_of_le_of_le
le_refl
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
LE.le.not_gt
le_csSup
contravariant_lt_of_covariant_le
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instNontrivial
isSt_st πŸ“–mathematicalβ€”IsSt
st
β€”isSt_st'
Infinite.st_eq
isSt_st' πŸ“–mathematicalInfiniteIsSt
st
β€”IsSt.isSt_st
isSt_sSup
isSt_st_of_exists_st πŸ“–mathematicalIsStstβ€”IsSt.isSt_st
isSt_symm_real πŸ“–mathematicalβ€”IsSt
ofReal
β€”isSt_real_iff_eq
isSt_trans_real πŸ“–β€”IsSt
ofReal
β€”β€”isSt_real_iff_eq
lt_neg_of_pos_of_infinitesimal πŸ“–mathematicalInfinitesimal
Real
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
β€”infinitesimal_def
lt_of_pos_of_infinitesimal πŸ“–mathematicalInfinitesimal
Real
Real.instLT
Real.instZero
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”infinitesimal_def
lt_of_st_lt πŸ“–mathematicalInfinite
Real
Real.instLT
st
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
β€”IsSt.lt
isSt_st'
lt_of_tendsto_atBot πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atBot
Real.instPreorder
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”instInfiniteNat
ofSeq_surjective
ofSeq_lt_ofSeq
Filter.Tendsto.eventually_mem
tendsto_ofSeq
Filter.Iio_mem_atBot
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
lt_of_tendsto_atTop πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atTop
Real.instPreorder
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”instInfiniteNat
ofSeq_surjective
ofSeq_lt_ofSeq
Filter.Tendsto.eventually_mem
tendsto_ofSeq
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
lt_of_tendsto_zero_of_pos πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLT
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofSeq
ofReal
β€”instInfiniteNat
ofSeq_lt_ofSeq
Filter.Eventually.filter_mono
Nat.hyperfilter_le_atTop
Filter.Tendsto.eventually
gt_mem_nhds
instOrderTopologyReal
neg_lt_of_tendsto_zero_of_pos πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Real.instLT
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
ofReal
ofSeq
β€”Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
neg_lt_of_neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_of_tendsto_zero_of_pos
neg_zero
not_infiniteNeg_add_infinitePos πŸ“–mathematicalInfiniteNeg
InfinitePos
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infinitePos_add_not_infiniteNeg
add_comm
not_infinitePos_add_infiniteNeg πŸ“–mathematicalInfinitePos
InfiniteNeg
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”infiniteNeg_add_not_infinitePos
add_comm
not_infinite_add πŸ“–mathematicalInfiniteHyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”exists_st_of_not_infinite
not_infinite_of_exists_st
IsSt.add
not_infinite_iff_exist_lt_gt πŸ“–mathematicalβ€”Infinite
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”exists_st_of_not_infinite
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
LT.lt.not_gt
not_infinite_mul πŸ“–mathematicalInfiniteHyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”exists_st_of_not_infinite
IsSt.not_infinite
IsSt.mul
not_infinite_neg πŸ“–mathematicalInfiniteHyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
β€”infinite_neg
not_infinite_of_exists_st πŸ“–mathematicalIsStInfiniteβ€”IsSt.not_infinite
not_infinite_real πŸ“–mathematicalβ€”Infinite
ofReal
β€”not_infinite_iff_exist_lt_gt
coe_lt_coe
sub_one_lt
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_add_one
not_infinite_zero πŸ“–mathematicalβ€”Infinite
Hyperreal
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
β€”Infinite.ne_zero
not_real_of_infinitesimal_ne_zero πŸ“–β€”Infinitesimalβ€”β€”coe_eq_zero
IsSt.unique
isSt_refl_real
ofSeq_le_ofSeq πŸ“–mathematicalβ€”Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofSeq
Filter.Eventually
Real
Real.instLE
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
β€”Filter.Germ.coe_le
instInfiniteNat
ofSeq_lt_ofSeq πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofSeq
Filter.Eventually
Real
Real.instLT
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
β€”Filter.Germ.coe_lt
instInfiniteNat
ofSeq_surjective πŸ“–mathematicalβ€”Hyperreal
ofSeq
β€”instInfiniteNat
omega_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
omega_pos
omega_pos πŸ“–mathematicalβ€”Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
omega
β€”coe_lt_omega
st_add πŸ“–mathematicalInfinitest
Hyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
Real
Real.instAdd
β€”IsSt.unique
isSt_st'
not_infinite_add
IsSt.add
st_eq_sSup πŸ“–mathematicalβ€”st
SupSet.sSup
Real
Real.instSupSet
setOf
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”em
Infinite.st_eq
Set.eq_univ_of_forall
Real.sSup_univ
Set.eq_empty_of_forall_notMem
LT.lt.not_gt
Membership.mem.out
Real.sSup_empty
IsSt.st_eq
isSt_sSup
st_id_real πŸ“–mathematicalβ€”st
ofReal
β€”IsSt.st_eq
isSt_refl_real
st_inv πŸ“–mathematicalβ€”st
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
instField
Real
Real.instInv
β€”inv_zero
coe_zero
st_id_real
Infinite.st_eq
infinitesimal_iff_infinite_inv
IsSt.st_eq
infinitesimal_inv_of_infinite
IsSt.inv
isSt_st'
st_le_of_le πŸ“–mathematicalInfinite
Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
Real
Real.instLE
st
β€”IsSt.le
isSt_st'
st_mul πŸ“–mathematicalInfinitest
Hyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
Real
Real.instMul
β€”isSt_st'
not_infinite_mul
IsSt.unique
IsSt.mul
st_neg πŸ“–mathematicalβ€”st
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
instField
Real
Real.instNeg
β€”Infinite.st_eq
infinite_neg
neg_zero
IsSt.unique
isSt_st'
not_infinite_neg
IsSt.neg
stdPart_coe πŸ“–mathematicalβ€”ArchimedeanClass.stdPart
Hyperreal
instLinearOrder
instField
IsStrictOrderedRing.toIsOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsStrictOrderedRing
ofReal
β€”ArchimedeanClass.stdPart_map_real
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
stdPart_epsilon πŸ“–mathematicalβ€”ArchimedeanClass.stdPart
Hyperreal
instLinearOrder
instField
IsStrictOrderedRing.toIsOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsStrictOrderedRing
epsilon
Real
Real.instZero
β€”IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ArchimedeanClass.stdPart_eq_zero
LT.lt.ne'
archimedeanClassMk_epsilon_pos
stdPart_of_tendsto πŸ“–mathematicalFilter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ArchimedeanClass.stdPart
Hyperreal
instLinearOrder
instField
IsStrictOrderedRing.toIsOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsStrictOrderedRing
β€”instInfiniteNat
ArchimedeanClass.stdPart_eq
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
tendsto_iff_forall
stdPart_omega πŸ“–mathematicalβ€”ArchimedeanClass.stdPart
Hyperreal
instLinearOrder
instField
IsStrictOrderedRing.toIsOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instIsStrictOrderedRing
omega
Real
Real.instZero
β€”IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toIsStrictOrderedRing
IsDomain.to_noZeroDivisors
instIsDomain
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
ArchimedeanClass.stdPart_eq_zero
LT.lt.ne
archimedeanClassMk_omega_neg
tendsto_atBot_iff πŸ“–mathematicalβ€”Filter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atBot
Real.instPreorder
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
β€”instInfiniteNat
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
lt_of_tendsto_atBot
archimedeanClassMk_neg_of_tendsto_atBot
ofSeq_surjective
tendsto_ofSeq
Filter.tendsto_atBot
ofSeq_le_ofSeq
LT.lt.le
ArchimedeanClass.lt_of_mk_lt_mk_of_nonpos
LT.lt.trans_le
archimedeanClassMk_coe_nonneg
tendsto_atTop_iff πŸ“–mathematicalβ€”Filter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
Filter.atTop
Real.instPreorder
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
ArchimedeanClass
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
IsOrderedRing.toIsOrderedAddMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
ArchimedeanClass.instLinearOrder
ArchimedeanClass.instZero
β€”instInfiniteNat
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
lt_of_tendsto_atTop
archimedeanClassMk_neg_of_tendsto_atTop
ofSeq_surjective
tendsto_ofSeq
Filter.tendsto_atTop
ofSeq_le_ofSeq
LT.lt.le
ArchimedeanClass.lt_of_mk_lt_mk_of_nonneg
LT.lt.trans_le
archimedeanClassMk_coe_nonneg
tendsto_iff_forall πŸ“–mathematicalβ€”Filter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrder
ofReal
β€”instInfiniteNat
ofSeq_surjective
tendsto_ofSeq
Filter.HasBasis.tendsto_right_iff
nhds_basis_Ioo
instOrderTopologyReal
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instNoMinOrderOfNontrivial
NoMaxOrder.exists_gt
LT.lt.le
NoMinOrder.exists_lt
exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.trans_le
coe_lt_coe
LE.le.trans_lt
tendsto_ofSeq πŸ“–mathematicalβ€”Filter.Germ.Tendsto
Real
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
ofSeq
Filter.Tendsto
β€”instInfiniteNat

Hyperreal.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
mul πŸ“–mathematicalHyperreal.InfiniteHyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
β€”Hyperreal.infinite_mul_of_infinite_not_infinitesimal
not_infinitesimal
ne_real πŸ“–β€”Hyperreal.Infiniteβ€”β€”Hyperreal.not_infinite_real
ne_zero πŸ“–β€”Hyperreal.Infiniteβ€”β€”LT.lt.ne'
Hyperreal.InfinitePos.pos
LT.lt.ne
Hyperreal.InfiniteNeg.lt_zero
not_infinitesimal πŸ“–mathematicalHyperreal.InfiniteHyperreal.Infinitesimalβ€”Hyperreal.Infinitesimal.not_infinite
st_eq πŸ“–mathematicalHyperreal.InfiniteHyperreal.st
Real
Real.instZero
β€”Hyperreal.IsSt.not_infinite

Hyperreal.InfiniteNeg

Theorems

NameKindAssumesProvesValidatesDepends On
lt_zero πŸ“–mathematicalHyperreal.InfiniteNegHyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Hyperreal.instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
β€”β€”
neg πŸ“–mathematicalHyperreal.InfiniteNegHyperreal.InfinitePos
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
β€”lt_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Hyperreal.instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
not_infinitePos πŸ“–mathematicalHyperreal.InfiniteNegHyperreal.InfinitePosβ€”LT.lt.not_gt
not_infinitesimal πŸ“–mathematicalHyperreal.InfiniteNegHyperreal.Infinitesimalβ€”Hyperreal.Infinite.not_infinitesimal

Hyperreal.InfinitePos

Theorems

NameKindAssumesProvesValidatesDepends On
neg πŸ“–mathematicalHyperreal.InfinitePosHyperreal.InfiniteNeg
Hyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
β€”neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Hyperreal.instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
not_infiniteNeg πŸ“–mathematicalHyperreal.InfinitePosHyperreal.InfiniteNegβ€”Hyperreal.InfiniteNeg.not_infinitePos
not_infinitesimal πŸ“–mathematicalHyperreal.InfinitePosHyperreal.Infinitesimalβ€”Hyperreal.Infinite.not_infinitesimal
pos πŸ“–mathematicalHyperreal.InfinitePosHyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Hyperreal.instLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
β€”β€”

Hyperreal.Infinitesimal

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalHyperreal.InfinitesimalHyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
β€”add_zero
Hyperreal.IsSt.add
eq_zero πŸ“–mathematicalHyperreal.Infinitesimal
Hyperreal.ofReal
Real
Real.instZero
β€”Hyperreal.eq_of_isSt_real
mul πŸ“–mathematicalHyperreal.InfinitesimalHyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
β€”MulZeroClass.mul_zero
Hyperreal.IsSt.mul
neg πŸ“–mathematicalHyperreal.InfinitesimalHyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
β€”neg_zero
Hyperreal.IsSt.neg
not_infinite πŸ“–mathematicalHyperreal.InfinitesimalHyperreal.Infiniteβ€”Hyperreal.IsSt.not_infinite

Hyperreal.IsSt

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalHyperreal.IsStHyperreal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
Real
Real.instAdd
β€”mapβ‚‚
Continuous.continuousAt
continuous_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
infinitesimal_sub πŸ“–mathematicalHyperreal.IsStHyperreal.Infinitesimal
Hyperreal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
Hyperreal.ofReal
β€”sub_self
sub
Hyperreal.isSt_refl_real
inv πŸ“–mathematicalHyperreal.Infinitesimal
Hyperreal.IsSt
Hyperreal
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Hyperreal.instField
Real
Real.instInv
β€”map
ContinuousInvβ‚€.continuousAt_invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
isSt_st πŸ“–mathematicalHyperreal.IsStHyperreal.stβ€”st_eq
le πŸ“–mathematicalHyperreal.IsSt
Hyperreal
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Hyperreal.instLinearOrder
Real
Real.instLE
β€”not_lt
LE.le.not_gt
lt
lt πŸ“–mathematicalHyperreal.IsSt
Real
Real.instLT
Hyperreal
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Hyperreal.instLinearOrder
β€”Hyperreal.ofSeq_surjective
instInfiniteNat
Hyperreal.ofSeq_lt_ofSeq
Filter.Tendsto.eventually_lt
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Hyperreal.isSt_ofSeq_iff_tendsto
map πŸ“–mathematicalHyperreal.IsSt
ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Filter.Germ.map
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
β€”instInfiniteNat
Hyperreal.ofSeq_surjective
Hyperreal.isSt_ofSeq_iff_tendsto
Filter.Tendsto.comp
ContinuousAt.tendsto
mapβ‚‚ πŸ“–mathematicalHyperreal.IsSt
ContinuousAt
Real
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Filter.Germ.mapβ‚‚
Ultrafilter.toFilter
Filter.hyperfilter
instInfiniteNat
β€”instInfiniteNat
Hyperreal.ofSeq_surjective
Hyperreal.isSt_ofSeq_iff_tendsto
Filter.Tendsto.comp
ContinuousAt.tendsto
Filter.Tendsto.prodMk_nhds
mul πŸ“–mathematicalHyperreal.IsStHyperreal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Hyperreal.instField
Real
Real.instMul
β€”mapβ‚‚
Continuous.continuousAt
continuous_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
neg πŸ“–mathematicalHyperreal.IsStHyperreal
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
Real
Real.instNeg
β€”map
Continuous.continuousAt
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
not_infinite πŸ“–mathematicalHyperreal.IsStHyperreal.Infiniteβ€”lt_asymm
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
st_eq πŸ“–mathematicalHyperreal.IsStHyperreal.stβ€”Hyperreal.st.eq_1
unique
sub πŸ“–mathematicalHyperreal.IsStHyperreal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Hyperreal.instField
Real
Real.instSub
β€”mapβ‚‚
Continuous.continuousAt
ContinuousSub.continuous_sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
unique πŸ“–β€”Hyperreal.IsStβ€”β€”Hyperreal.ofSeq_surjective
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instInfiniteNat
Ultrafilter.neBot
Hyperreal.isSt_ofSeq_iff_tendsto

---

← Back to Index