Documentation Verification Report

OfDigits

πŸ“ Source: Mathlib/Analysis/Real/OfDigits.lean

Statistics

MetricCount
Definitionsdigits, ofDigits, ofDigitsTerm
3
Theoremsabs_ofDigits_sub_ofDigits_le, continuous_ofDigits, hasSum_ofDigitsTerm_digits, le_sum_ofDigitsTerm_digits, ofDigitsTerm_le, ofDigitsTerm_nonneg, ofDigits_SurjOn, ofDigits_const_last_eq_one, ofDigits_const_last_eq_one', ofDigits_digits, ofDigits_digits_sum_eq, ofDigits_eq_sum_add_ofDigits, ofDigits_le_one, ofDigits_nonneg, sum_ofDigitsTerm_digits_le, summable_ofDigitsTerm
16
Total19

Real

Definitions

NameCategoryTheorems
digits πŸ“–CompOp
5 mathmath: sum_ofDigitsTerm_digits_le, hasSum_ofDigitsTerm_digits, le_sum_ofDigitsTerm_digits, ofDigits_digits, ofDigits_digits_sum_eq
ofDigits πŸ“–CompOp
13 mathmath: ofDigits_const_last_eq_one, ofDigits_zero_two_sequence_mem_cantorSet, ofDigits_cantorToTernary, ofDigits_bool_to_fin_three_mem_cantorSet, ofDigits_eq_sum_add_ofDigits, ofDigits_SurjOn, cantorSet_eq_zero_two_ofDigits, ofDigits_nonneg, ofDigits_digits, continuous_ofDigits, abs_ofDigits_sub_ofDigits_le, ofDigits_const_last_eq_one', ofDigits_le_one
ofDigitsTerm πŸ“–CompOp
12 mathmath: summable_ofDigitsTerm, sum_ofDigitsTerm_digits_le, le_ofDigits_cantorToTernary_sum, ofDigitsTerm_le, hasSum_ofDigitsTerm_digits, ofDigits_eq_sum_add_ofDigits, le_sum_ofDigitsTerm_digits, ofDigitsTerm_nonneg, ofDigits_cantorToTernary_sum_le, cantorSequence_eq_self_sub_sum_cantorToTernary, cantorSequence_get_succ, ofDigits_digits_sum_eq

Theorems

NameKindAssumesProvesValidatesDepends On
abs_ofDigits_sub_ofDigits_le πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
instSub
ofDigits
instInv
Monoid.toNatPow
instMonoid
instNatCast
β€”ofDigits_eq_sum_add_ofDigits
Finset.sum_congr
Finset.mem_range
add_sub_add_left_eq_sub
mul_sub
abs_mul
instIsOrderedRing
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
Nat.cast_nonneg'
instZeroLEOneClass
mul_le_of_le_one_right
sub_zero
abs_sub_le_of_le_of_le
ofDigits_nonneg
ofDigits_le_one
continuous_ofDigits πŸ“–mathematicalβ€”Continuous
Real
Pi.topologicalSpace
instTopologicalSpaceFin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ofDigits
β€”continuous_of_discreteTopology
Finite.instDiscreteTopology
instT1SpaceForall
T5Space.toT1Space
OrderTopology.t5Space
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyFin
Finite.of_subsingleton
Finite.of_fintype
continuous_tsum
instCompleteSpace
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
instDiscreteTopologyNat
continuous_apply
summable_geometric_of_lt_one
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Int.cast_one
Int.cast_natCast
Rat.cast_one
Rat.cast_natCast
inv_lt_one_of_one_ltβ‚€
instZeroLEOneClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
ofDigitsTerm_nonneg
inv_pow
LE.le.trans
ofDigitsTerm_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
hasSum_ofDigitsTerm_digits πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ico
instPreorder
instZero
instOne
HasSum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ofDigitsTerm
digits
SummationFilter.unconditional
β€”hasSum_iff_tendsto_nat_of_summable_norm
Summable.abs
instIsOrderedAddMonoid
instIsUniformAddGroupReal
instCompleteSpace
summable_ofDigitsTerm
tendsto_of_tendsto_of_tendsto_of_le_of_le
instOrderTopologyReal
sub_zero
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
tendsto_const_nhds
tendsto_pow_atTop_nhds_zero_of_abs_lt_one
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instIsOrderedRing
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
le_sum_ofDigitsTerm_digits
sum_ofDigitsTerm_digits_le
le_sum_ofDigitsTerm_digits πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ico
instPreorder
instZero
instOne
instLE
instSub
Monoid.toNatPow
instMonoid
instInv
instNatCast
Finset.sum
instAddCommMonoid
Finset.range
ofDigitsTerm
digits
β€”NeZero.pos
Nat.instCanonicallyOrderedAdd
instIsStrictOrderedRing
ofDigits_digits_sum_eq
Nat.lt_floor_add_one
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
instNontrivial
mul_sub
inv_pow
mul_inv_cancelβ‚€
ne_of_gt
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
ofDigitsTerm_le πŸ“–mathematicalβ€”Real
instLE
ofDigitsTerm
instMul
instSub
instNatCast
instOne
instInv
Monoid.toNatPow
instMonoid
β€”mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
Nat.cast_add
Nat.cast_one
add_sub_cancel_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
NeZero.one
instNontrivial
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
ofDigitsTerm_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
ofDigitsTerm
β€”mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
ofDigits_SurjOn πŸ“–mathematicalβ€”Set.SurjOn
Real
ofDigits
Set.univ
Set.Icc
instPreorder
instZero
instOne
β€”ofDigits_digits
Set.image_univ
ofDigits_const_last_eq_one'
ofDigits_const_last_eq_one πŸ“–mathematicalβ€”ofDigits
Real
instOne
β€”Nat.cast_add_one
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Nat.cast_nonneg
instIsOrderedRing
Nat.cast_add
Nat.cast_one
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instNontrivial
NeZero.pos
Nat.instCanonicallyOrderedAdd
Summable.tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
summable_nat_add_iff
instIsTopologicalAddGroupReal
summable_geometric_of_lt_one
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Nat.cast_pos'
instZeroLEOneClass
NeZero.one
Right.add_pos_of_nonneg_of_pos
Nat.instIsOrderedAddMonoid
zero_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
geom_series_succ
instHasSummableGeomSeries
norm_inv
tsum_geometric_of_lt_one
Nat.cast_zero
IsStrictOrderedRing.toCharZero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
add_pos'
lt_of_le_of_ne'
Nat.cast_nonneg'
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
add_sub_cancel_right
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
ofDigits_const_last_eq_one' πŸ“–mathematicalβ€”ofDigits
Real
instOne
β€”Function.hfunext
ofDigits_const_last_eq_one
ofDigits_digits πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ico
instPreorder
instZero
instOne
ofDigits
digits
β€”Summable.hasSum_iff
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
summable_ofDigitsTerm
hasSum_ofDigitsTerm_digits
ofDigits_digits_sum_eq πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ico
instPreorder
instZero
instOne
instMul
Monoid.toNatPow
instMonoid
instNatCast
Finset.sum
instAddCommMonoid
Finset.range
ofDigitsTerm
digits
Nat.floor
semiring
partialOrder
FloorRing.toFloorSemiring
instRing
linearOrder
instIsStrictOrderedRing
instFloorRing
β€”instIsStrictOrderedRing
pow_zero
MulZeroClass.mul_zero
one_mul
Nat.floor_eq_zero
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
Finset.sum_range_succ
mul_add
Distrib.leftDistribClass
pow_succ'
mul_assoc
ofDigitsTerm.eq_1
digits.eq_1
mul_left_comm
mul_inv_cancelβ‚€
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
instNontrivial
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
mul_one
mul_comm
Nat.cast_mul_floor_div_cancel
ofDigits_eq_sum_add_ofDigits πŸ“–mathematicalβ€”ofDigits
Real
instAdd
Finset.sum
instAddCommMonoid
Finset.range
ofDigitsTerm
instMul
instInv
Monoid.toNatPow
instMonoid
instNatCast
β€”Summable.sum_add_tsum_nat_add
instIsTopologicalAddGroupReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
summable_ofDigitsTerm
Summable.tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
SummationFilter.instNeBotUnconditional
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
ofDigits_le_one πŸ“–mathematicalβ€”Real
instLE
ofDigits
instOne
β€”LE.le.eq_or_lt
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Nat.cast_one
one_pow
inv_one
mul_one
tsum_zero
instZeroLEOneClass
pow_succ'
mul_inv
tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
tsum_geometric_of_lt_one
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Int.cast_one
Int.cast_natCast
Rat.cast_one
Rat.cast_natCast
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Summable.tsum_mono
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
SummationFilter.instNeBotUnconditional
summable_ofDigitsTerm
Summable.mul_left
summable_geometric_of_lt_one
ofDigitsTerm_le
ofDigits_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
ofDigits
β€”tsum_nonneg
instIsOrderedAddMonoid
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
ofDigitsTerm_nonneg
sum_ofDigitsTerm_digits_le πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ico
instPreorder
instZero
instOne
instLE
Finset.sum
instAddCommMonoid
Finset.range
ofDigitsTerm
digits
β€”instIsStrictOrderedRing
ofDigits_digits_sum_eq
Nat.floor_le
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
mul_le_mul_iff_of_pos_left
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
NeZero.one
instNontrivial
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
summable_ofDigitsTerm πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ofDigitsTerm
SummationFilter.unconditional
β€”Summable.of_nonneg_of_le
ofDigitsTerm_nonneg
ofDigitsTerm_le
LE.le.eq_or_lt
Nat.cast_one
sub_self
one_pow
inv_one
mul_one
pow_succ'
mul_inv
Summable.mul_left
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
summable_geometric_of_lt_one
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.one
instNontrivial
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
IsStrictOrderedRing.toCharZero

---

← Back to Index