Documentation Verification Report

Leibniz

πŸ“ Source: Mathlib/Analysis/Real/Pi/Leibniz.lean

Statistics

MetricCount
Definitions0
Theoremstendsto_sum_pi_div_four
1
Total1

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_sum_pi_div_four πŸ“–mathematicalβ€”Filter.Tendsto
Real
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNeg
instOne
instAdd
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
pi
β€”Nat.instAtLeastTwoHAddOfNat
Antitone.tendsto_alternating_series_of_tendsto_zero
antitone_iff_forall_lt
inv_antiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_nonneg'
instZeroLEOneClass
Nat.cast_one
add_le_add_left
mul_le_mul_of_nonneg_left
Nat.mono_cast
Filter.Tendsto.inv_tendsto_atTop
instOrderTopologyReal
Filter.tendsto_atTop_add_const_right
Filter.Tendsto.const_mul_atTop
zero_lt_two
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_natCast_atTop_atTop
instArchimedean
tendsto_tsum_powerSeries_nhdsWithin_lt
tendsto_nhdsWithin_of_tendsto_nhds
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
one_pow
Filter.Tendsto.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.eventually_iff_exists_mem
Ioo_mem_nhdsLT
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Set.mem_Iio
sq_lt_one_iff_abs_lt_one
abs_lt
Set.mem_Ioo
Filter.Tendsto.mul
Filter.Tendsto.comp
Filter.Tendsto.congr'
mul_one
eventuallyEq_nhdsWithin_iff
Metric.eventually_nhds_iff
zero_lt_one
norm_eq_abs
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
abs_sub_lt_iff
dist_eq
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_nonpos_of_le
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_arctan
tsum_mul_right
mul_assoc
div_mul_eq_mul_div
arctan_one
tendsto_nhds_unique
nhdsLT_neBot
LinearOrderedSemiField.toDenselyOrdered
instNoMinOrderOfNontrivial
Filter.Tendsto.mono_left
Continuous.tendsto
continuous_arctan

---

← Back to Index