Documentation Verification Report

Wallis

📁 Source: Mathlib/Analysis/Real/Pi/Wallis.lean

Statistics

MetricCount
Definitions0
TheoremsW_eq_factorial_ratio, W_eq_integral_sin_pow_div_integral_sin_pow, W_le, W_pos, W_succ, le_W, tendsto_W_nhds_pi_div_two, tendsto_prod_pi_div_two
8
Total8

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_prod_pi_div_two 📖mathematicalFilter.Tendsto
Real
Finset.prod
instCommMonoid
Finset.range
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
pi
Wallis.tendsto_W_nhds_pi_div_two

Real.Wallis

Theorems

NameKindAssumesProvesValidatesDepends On
W_eq_factorial_ratio 📖mathematicalW
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.factorial
Real.instAdd
Real.instOne
Nat.instAtLeastTwoHAddOfNat
Finset.prod_range_zero
MulZeroClass.mul_zero
pow_zero
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.instAtLeastTwo
Finset.prod_range_succ
div_mul_div_comm
div_eq_div_iff
ne_of_gt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
Nat.factorial_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Nat.cast_nonneg'
add_pos'
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
pow_succ
Nat.cast_mul
Nat.cast_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
add_zero
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.RingNF.add_assoc_rev
W_eq_integral_sin_pow_div_integral_sin_pow 📖mathematicalReal
Real.instMul
Real.instInv
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
W
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.instZero
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Nat.instAtLeastTwoHAddOfNat
integral_sin_pow_even
integral_sin_pow_odd
mul_div_mul_comm
Finset.prod_div_distrib
inv_div
Finset.prod_congr
div_div_div_comm
div_div_eq_mul_div
mul_div_assoc
W_le 📖mathematicalReal
Real.instLE
W
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_div_two_pos
div_eq_inv_mul
W_eq_integral_sin_pow_div_integral_sin_pow
integral_sin_pow_pos
integral_sin_pow_succ_le
W_pos 📖mathematicalReal
Real.instLT
Real.instZero
W
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Nat.instAtLeastTwoHAddOfNat
W_succ
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_nonneg'
Nat.cast_one
W_succ 📖mathematicalW
Real
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
Finset.prod_range_succ
le_W 📖mathematicalReal
Real.instLE
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
Real.pi
W
Nat.instAtLeastTwoHAddOfNat
le_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.pi_div_two_pos
div_eq_inv_mul
W_eq_integral_sin_pow_div_integral_sin_pow
integral_sin_pow_pos
integral_sin_pow
Real.sin_zero
zero_pow
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
Real.cos_zero
mul_one
Real.sin_pi
Real.cos_pi
mul_neg
neg_zero
sub_self
Nat.cast_mul
zero_div
zero_add
integral_sin_pow_succ_le
tendsto_W_nhds_pi_div_two 📖mathematicalFilter.Tendsto
Real
W
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
tendsto_of_tendsto_of_tendsto_of_le_of_le
instOrderTopologyReal
Nat.instAtLeastTwoHAddOfNat
sub_zero
one_mul
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
sub_div'
ne_of_gt
add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Nat.cast_nonneg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Filter.Tendsto.const_sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Filter.Tendsto.div_atTop
Real.instIsStrictOrderedRing
tendsto_const_nhds
Filter.Tendsto.atTop_add
Filter.Tendsto.const_mul_atTop
tendsto_natCast_atTop_atTop
Real.instArchimedean
le_W
W_le

---

← Back to Index