Documentation Verification Report

Arcosh

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Arcosh.lean

Statistics

MetricCount
Definitionsarcosh, coshOpenPartialHomeomorph, coshPartialEquiv
3
Theoremsadd_sqrt_self_sq_sub_one_inv, analyticAt_arcosh, analyticOnNhd_arcosh, analyticOn_arcosh, analyticWithinAt_arcosh, arcosh_bijOn, arcosh_cosh, arcosh_eq_zero_iff, arcosh_injOn, arcosh_le_arcosh, arcosh_lt_arcosh, arcosh_nonneg, arcosh_pos, arcosh_surjOn, arcosh_zero, contDiffAt_arcosh, contDiffOn_arcosh, continuousOn_arcosh, cosh_arcosh, cosh_bijOn, cosh_injOn, cosh_surjOn, differentiableAt_arcosh, differentiableOn_arcosh, exp_arcosh, hasDerivAt_arcosh, hasStrictDerivAt_arcosh, sinh_arcosh, strictMonoOn_arcosh, tanh_arcosh
30
Total33

Real

Definitions

NameCategoryTheorems
arcosh πŸ“–CompOp
26 mathmath: differentiableOn_arcosh, arcosh_bijOn, contDiffAt_arcosh, arcosh_nonneg, arcosh_zero, hasDerivAt_arcosh, sinh_arcosh, tanh_arcosh, exp_arcosh, arcosh_injOn, cosh_arcosh, hasStrictDerivAt_arcosh, analyticOn_arcosh, analyticAt_arcosh, arcosh_pos, strictMonoOn_arcosh, arcosh_cosh, contDiffOn_arcosh, arcosh_le_arcosh, differentiableAt_arcosh, analyticWithinAt_arcosh, arcosh_eq_zero_iff, continuousOn_arcosh, arcosh_surjOn, arcosh_lt_arcosh, analyticOnNhd_arcosh
coshOpenPartialHomeomorph πŸ“–CompOpβ€”
coshPartialEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_sqrt_self_sq_sub_one_inv πŸ“–mathematicalReal
instLE
instOne
instInv
instAdd
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”inv_eq_of_mul_eq_one_right
pow_two_sub_pow_two
sq_sqrt
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
one_le_powβ‚€
instZeroLEOneClass
IsOrderedRing.toPosMulMono
instIsOrderedRing
sub_sub_cancel
analyticAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
AnalyticAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
β€”ContDiffAt.analyticAt
contDiffAt_arcosh
analyticOnNhd_arcosh πŸ“–mathematicalSet
Real
Set.instHasSubset
Set.Ioi
instPreorder
instOne
AnalyticOnNhd
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
β€”analyticAt_arcosh
analyticOn_arcosh πŸ“–mathematicalSet
Real
Set.instHasSubset
Set.Ioi
instPreorder
instOne
AnalyticOn
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
β€”AnalyticOn.mono
ContDiffOn.analyticOn
contDiffOn_arcosh
analyticWithinAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
AnalyticWithinAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
β€”ContDiffWithinAt.analyticWithinAt
ContDiffAt.contDiffWithinAt
contDiffAt_arcosh
arcosh_bijOn πŸ“–mathematicalβ€”Set.BijOn
Real
arcosh
Set.Ici
instPreorder
instOne
instZero
β€”PartialEquiv.bijOn
arcosh_cosh πŸ“–mathematicalReal
instLE
instZero
arcosh
cosh
β€”arcosh.eq_1
exp_eq_exp
exp_log
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cosh_pos
sqrt_nonneg
eq_sub_iff_add_eq'
exp_sub_cosh
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
sinh_nonneg_iff
sinh_sq
sq_sqrt
pow_two_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
arcosh_eq_zero_iff πŸ“–mathematicalReal
instLE
instOne
arcosh
instZero
β€”exp_injective
exp_arcosh
exp_zero
arcosh_injOn πŸ“–mathematicalβ€”Set.InjOn
Real
arcosh
Set.Ici
instPreorder
instOne
β€”PartialEquiv.injOn
arcosh_le_arcosh πŸ“–mathematicalReal
instLT
instZero
instLE
arcosh
β€”StrictMonoOn.le_iff_le
strictMonoOn_arcosh
arcosh_lt_arcosh πŸ“–mathematicalReal
instLT
instZero
arcoshβ€”StrictMonoOn.lt_iff_lt
strictMonoOn_arcosh
arcosh_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
arcosh
β€”log_nonneg
add_zero
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_nonneg
arcosh_pos πŸ“–mathematicalReal
instLT
instOne
instZero
arcosh
β€”log_pos
add_zero
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_nonneg
arcosh_surjOn πŸ“–mathematicalβ€”Set.SurjOn
Real
arcosh
Set.Ici
instPreorder
instOne
instZero
β€”PartialEquiv.surjOn
arcosh_zero πŸ“–mathematicalβ€”arcosh
Real
instOne
instZero
β€”one_pow
sub_self
sqrt_zero
add_zero
log_one
contDiffAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
ContDiffAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
β€”OpenPartialHomeomorph.contDiffAt_symm_deriv
instCompleteSpace
sinh_eq_zero
LT.lt.ne'
arcosh_pos
hasDerivAt_cosh
ContDiff.contDiffAt
contDiff_cosh
contDiffOn_arcosh πŸ“–mathematicalβ€”ContDiffOn
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
arcosh
Set.Ioi
instPreorder
instOne
β€”ContDiffAt.contDiffWithinAt
contDiffAt_arcosh
continuousOn_arcosh πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
arcosh
Set.Ici
instPreorder
instOne
β€”add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_nonneg
ContinuousOn.comp
continuousOn_log
Continuous.continuousOn
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id'
Continuous.comp'
continuous_sqrt
Continuous.pow
IsTopologicalSemiring.toContinuousMul
continuous_const
cosh_arcosh πŸ“–mathematicalReal
instLE
instOne
cosh
arcosh
β€”arcosh.eq_1
Nat.instAtLeastTwoHAddOfNat
cosh_eq
exp_neg
exp_log
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
sqrt_nonneg
add_sqrt_self_sq_sub_one_inv
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
cosh_bijOn πŸ“–mathematicalβ€”Set.BijOn
Real
cosh
Set.Ici
instPreorder
instZero
instOne
β€”PartialEquiv.bijOn
cosh_injOn πŸ“–mathematicalβ€”Set.InjOn
Real
cosh
Set.Ici
instPreorder
instZero
β€”PartialEquiv.injOn
cosh_surjOn πŸ“–mathematicalβ€”Set.SurjOn
Real
cosh
Set.Ici
instPreorder
instZero
instOne
β€”PartialEquiv.surjOn
differentiableAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
arcosh
β€”HasDerivAt.differentiableAt
hasDerivAt_arcosh
differentiableOn_arcosh πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
arcosh
Set.Ioi
instPreorder
instOne
β€”DifferentiableAt.differentiableWithinAt
differentiableAt_arcosh
exp_arcosh πŸ“–mathematicalReal
instLE
instOne
exp
arcosh
instAdd
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”exp_log
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
sqrt_nonneg
hasDerivAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
HasDerivAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
arcosh
instInv
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”HasStrictDerivAt.hasDerivAt
hasStrictDerivAt_arcosh
hasStrictDerivAt_arcosh πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioi
instPreorder
instOne
HasStrictDerivAt
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
arcosh
instInv
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
sinh_arcosh
le_of_lt
OpenPartialHomeomorph.hasStrictDerivAt_symm
sinh_eq_zero
ne_of_gt
arcosh_pos
hasStrictDerivAt_cosh
sinh_arcosh πŸ“–mathematicalReal
instLE
instOne
sinh
arcosh
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”arcosh.eq_1
Nat.instAtLeastTwoHAddOfNat
sinh_eq
exp_neg
exp_log
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
sqrt_nonneg
add_sqrt_self_sq_sub_one_inv
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
strictMonoOn_arcosh πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
arcosh
Set.Ioi
instZero
β€”StrictMonoOn.comp
strictMonoOn_log
StrictMonoOn.add_monotone
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
strictMonoOn_id
sqrt_monotone
sub_le_sub_right
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt
add_pos_of_pos_of_nonneg
sqrt_nonneg
tanh_arcosh πŸ“–mathematicalReal
instLE
instOne
tanh
arcosh
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instSub
Monoid.toNatPow
instMonoid
β€”tanh_eq_sinh_div_cosh
sinh_arcosh
cosh_arcosh

---

← Back to Index