Documentation Verification Report

Bernstein

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Bernstein.lean

Statistics

MetricCount
DefinitionsevalBernstein, bernstein, z, bernsteinApproximation
4
Theoremsprobability, variance, z_last, z_zero, apply, apply_one, apply_zero, bernsteinApproximation_uniform, bernstein_apply, bernstein_nonneg
10
Total14

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalBernstein πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
bernstein πŸ“–CompOp
5 mathmath: bernstein.variance, bernstein_apply, bernstein_nonneg, bernstein.probability, bernsteinApproximation.apply
bernsteinApproximation πŸ“–CompOp
4 mathmath: bernsteinApproximation.apply_zero, bernsteinApproximation.apply_one, bernsteinApproximation_uniform, bernsteinApproximation.apply

Theorems

NameKindAssumesProvesValidatesDepends On
bernsteinApproximation_uniform πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
bernsteinApproximation
Filter.atTop
Nat.instPreorder
nhds
ContinuousMap.compactOpen
β€”isUniformAddGroup_of_addCommGroup
Continuous.comp'
continuous_gauge
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
Continuous.fst
continuous_id'
Continuous.snd
IsCompact.bddAbove
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isCompact_range
instCompactSpaceProd
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
le_trans
Real.instIsOrderedRing
gauge_nonneg
Nat.instAtLeastTwoHAddOfNat
CompactSpace.uniformContinuous_of_continuous
Filter.HasBasis.uniformContinuous_iff
Metric.uniformity_basis_dist
Filter.HasBasis.uniformity_of_nhds_zero_swapped
Filter.basis_sets
Filter.Tendsto.eventually_lt_const
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
tendsto_gauge_nhds_zero
tendsto_const_div_atTop_nhds_zero_nat
RCLike.charZero_rclike
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.mp_mem
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
half_pos
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
Filter.univ_mem'
bernsteinApproximation.apply
Finset.sum_congr
smul_sub
Finset.sum_sub_distrib
bernstein.probability
one_smul
gauge_sum_le
absorbent_nhds_zero
gauge_smul_of_nonneg
IsStrictOrderedRing.toIsStrictOrderedModule
Set.isScalarTower
IsScalarTower.left
Finset.sum_add_sum_compl
add_lt_add_of_le_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
LT.lt.le
bernstein_nonneg
mul_comm
Finset.sum_mul
Finset.sum_le_sum_of_subset_of_nonneg
Finset.subset_univ
le_of_lt
mul_one
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Finset.mul_sum
one_mul
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
abs_of_pos
dist_comm
Finset.compl_filter
Finset.filter.congr_simp
mul_nonneg
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
bernstein.variance
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
div_le_div_of_nonneg_right
mul_le_mul
unitInterval.le_one
unitInterval.one_minus_le_one
unitInterval.one_minus_nonneg
Nat.cast_pos'
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
add_halves
CharZero.NeZero.two
Filter.HasBasis.tendsto_right_iff
nhds_basis_uniformity
Filter.HasBasis.compactConvergenceUniformity_of_compact
LocallyConvexSpace.convex_basis_zero
gauge_lt_one_subset_self
mem_of_mem_nhds
bernstein_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernstein
Real.instMul
Real.instNatCast
Nat.choose
Monoid.toNatPow
Real.instMonoid
Real.instSub
Real.instOne
β€”Polynomial.eval_mul
Polynomial.eval_natCast
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_sub
Polynomial.eval_one
bernstein_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
DFunLike.coe
ContinuousMap
Set.Elem
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernstein
β€”bernstein_apply
unitInterval.nonneg
unitInterval.one_minus_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
pow_nonneg
IsOrderedRing.toZeroLEOneClass

bernstein

Definitions

NameCategoryTheorems
z πŸ“–CompOp
4 mathmath: variance, z_zero, z_last, bernsteinApproximation.apply

Theorems

NameKindAssumesProvesValidatesDepends On
probability πŸ“–mathematicalβ€”Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
Fin.fintype
DFunLike.coe
ContinuousMap
Set.Elem
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernstein
Real.instOne
β€”bernsteinPolynomial.sum
Finset.sum_range
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Finset.sum_congr
Polynomial.eval_one
variance πŸ“–mathematicalβ€”Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
Fin.fintype
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instSub
Set
Set.instMembership
unitInterval
z
DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernstein
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
β€”Finset.sum_congr
bernstein_apply
nsmul_eq_mul
Finset.sum_range
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.eval_mul
Polynomial.eval_pow
Polynomial.eval_sub
Polynomial.eval_natCast
Polynomial.eval_X
Polynomial.eval_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Finset.sum_div
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
bernsteinPolynomial.variance
z_last πŸ“–mathematicalβ€”z
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
div_self
RCLike.charZero_rclike
z_zero πŸ“–mathematicalβ€”z
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
zero_div

bernsteinApproximation

Theorems

NameKindAssumesProvesValidatesDepends On
apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernsteinApproximation
Finset.sum
AddCommGroup.toAddCommMonoid
Finset.univ
Fin.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
bernstein
bernstein.z
β€”ContinuousMap.coe_sum
Finset.sum_congr
Finset.sum_apply
apply_one πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernsteinApproximation
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
apply
Finset.sum_congr
bernstein_apply
one_pow
mul_one
sub_self
Fin.sum_univ_castSucc
zero_pow
MulZeroClass.mul_zero
zero_smul
Finset.sum_const_zero
Nat.choose_self
Nat.cast_one
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
bernstein.z_last
one_smul
zero_add
apply_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
bernsteinApproximation
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
apply
Finset.sum_congr
bernstein_apply
sub_zero
one_pow
mul_one
Fin.sum_univ_succ
Nat.choose_zero_right
Nat.cast_one
pow_zero
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
zero_div
one_smul
Nat.cast_add
zero_pow
MulZeroClass.mul_zero
zero_smul
Finset.sum_const_zero
add_zero

---

← Back to Index