Documentation Verification Report

BinaryEntropy

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/BinaryEntropy.lean

Statistics

MetricCount
DefinitionsbinEntropy, qaryEntropy
2
TheoremsbinEntropy_continuous, binEntropy_eq_log_two, binEntropy_eq_negMulLog_add_negMulLog_one_sub, binEntropy_eq_negMulLog_add_negMulLog_one_sub', binEntropy_eq_zero, binEntropy_le_log_two, binEntropy_lt_log_two, binEntropy_neg_of_neg, binEntropy_neg_of_one_lt, binEntropy_nonneg, binEntropy_nonpos_of_nonpos, binEntropy_nonpos_of_one_le, binEntropy_one, binEntropy_one_sub, binEntropy_pos, binEntropy_strictAntiOn, binEntropy_strictMonoOn, binEntropy_two_inv, binEntropy_two_inv_add, binEntropy_zero, deriv2_binEntropy, deriv2_qaryEntropy, deriv_binEntropy, deriv_qaryEntropy, differentiableAt_binEntropy, differentiableAt_binEntropy_iff_ne_zero_one, differentiableAt_qaryEntropy, hasDerivAt_binEntropy, hasDerivAt_qaryEntropy, not_continuousAt_deriv_qaryEntropy_one, not_continuousAt_deriv_qaryEntropy_zero, qaryEntropy_continuous, qaryEntropy_neg_of_neg, qaryEntropy_nonneg, qaryEntropy_nonpos_of_nonpos, qaryEntropy_one, qaryEntropy_pos, qaryEntropy_strictAntiOn, qaryEntropy_strictMonoOn, qaryEntropy_two, qaryEntropy_zero, strictConcaveOn_qaryEntropy, strictConcave_binEntropy
43
Total45

Real

Definitions

NameCategoryTheorems
binEntropy πŸ“–CompOp
27 mathmath: deriv_binEntropy, binEntropy_continuous, binEntropy_nonneg, qaryEntropy_two, binEntropy_neg_of_neg, binEntropy_nonpos_of_nonpos, hasDerivAt_binEntropy, deriv2_binEntropy, binEntropy_zero, binEntropy_neg_of_one_lt, binEntropy_one, binEntropy_pos, binEntropy_eq_negMulLog_add_negMulLog_one_sub', binEntropy_one_sub, binEntropy_eq_log_two, binEntropy_two_inv_add, differentiableAt_binEntropy, binEntropy_lt_log_two, strictConcave_binEntropy, binEntropy_le_log_two, binEntropy_strictAntiOn, binEntropy_two_inv, differentiableAt_binEntropy_iff_ne_zero_one, binEntropy_nonpos_of_one_le, binEntropy_eq_negMulLog_add_negMulLog_one_sub, binEntropy_eq_zero, binEntropy_strictMonoOn
qaryEntropy πŸ“–CompOp
17 mathmath: qaryEntropy_two, qaryEntropy_nonneg, qaryEntropy_continuous, hasDerivAt_qaryEntropy, deriv_qaryEntropy, qaryEntropy_strictAntiOn, qaryEntropy_nonpos_of_nonpos, qaryEntropy_strictMonoOn, qaryEntropy_neg_of_neg, not_continuousAt_deriv_qaryEntropy_zero, deriv2_qaryEntropy, qaryEntropy_zero, differentiableAt_qaryEntropy, qaryEntropy_pos, not_continuousAt_deriv_qaryEntropy_one, qaryEntropy_one, strictConcaveOn_qaryEntropy

Theorems

NameKindAssumesProvesValidatesDepends On
binEntropy_continuous πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
binEntropy
β€”binEntropy_eq_negMulLog_add_negMulLog_one_sub'
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_negMulLog
Continuous.comp'
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
continuous_id'
binEntropy_eq_log_two πŸ“–mathematicalβ€”binEntropy
log
Real
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instInv
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.not_lt_iff_eq
binEntropy_le_log_two
binEntropy_lt_log_two
not_ne_iff
binEntropy_eq_negMulLog_add_negMulLog_one_sub πŸ“–mathematicalβ€”binEntropy
Real
instAdd
negMulLog
instSub
instOne
β€”log_inv
mul_neg
neg_sub
binEntropy_eq_negMulLog_add_negMulLog_one_sub' πŸ“–mathematicalβ€”binEntropy
Real
instAdd
negMulLog
instSub
instOne
β€”binEntropy_eq_negMulLog_add_negMulLog_one_sub
binEntropy_eq_zero πŸ“–mathematicalβ€”binEntropy
Real
instZero
instOne
β€”Mathlib.Tactic.Contrapose.contrapose₁
Ne.lt_or_gt
LT.lt.ne
binEntropy_neg_of_neg
binEntropy_neg_of_one_lt
LT.lt.ne'
binEntropy_pos
binEntropy_zero
binEntropy_one
binEntropy_le_log_two πŸ“–mathematicalβ€”Real
instLE
binEntropy
log
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
eq_or_ne
binEntropy_two_inv
LT.lt.le
binEntropy_lt_log_two
binEntropy_lt_log_two πŸ“–mathematicalβ€”Real
instLT
binEntropy
log
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
binEntropy_two_inv
le_or_gt
LE.le.trans_lt
binEntropy_nonpos_of_nonpos
log_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
RCLike.charZero_rclike
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
LT.lt.trans
Mathlib.Meta.NormNum.isNNRat_lt_true
instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
strictConcaveOn_log_Ioi
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_comm
add_sub_cancel
mul_inv_cancelβ‚€
ne_of_gt
one_add_one_eq_two
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
lt_of_not_ge
lt_or_gt_of_ne
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
CancelDenoms.derive_trans
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
binEntropy_one_sub
LT.lt.ne
binEntropy_neg_of_neg πŸ“–mathematicalReal
instLT
instZero
binEntropyβ€”log_inv
log_neg_eq_log
log_lt_log
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
log_pos_of_lt_neg_one
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_of_not_gt
log_neg_of_lt_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
log_one
MulZeroClass.mul_zero
Mathlib.Tactic.Linarith.add_nonpos
log_pos
binEntropy_neg_of_one_lt πŸ“–mathematicalReal
instLT
instOne
binEntropy
instZero
β€”binEntropy_one_sub
binEntropy_neg_of_neg
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
binEntropy_nonneg πŸ“–mathematicalReal
instLE
instZero
instOne
binEntropyβ€”LE.le.eq_or_lt
binEntropy_zero
binEntropy_one
LT.lt.le
binEntropy_pos
binEntropy_nonpos_of_nonpos πŸ“–mathematicalReal
instLE
instZero
binEntropyβ€”LE.le.eq_or_lt
binEntropy_zero
LT.lt.le
binEntropy_neg_of_neg
binEntropy_nonpos_of_one_le πŸ“–mathematicalReal
instLE
instOne
binEntropy
instZero
β€”binEntropy_one_sub
binEntropy_nonpos_of_nonpos
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
binEntropy_one πŸ“–mathematicalβ€”binEntropy
Real
instOne
instZero
β€”inv_one
log_one
MulZeroClass.mul_zero
sub_self
inv_zero
log_zero
add_zero
binEntropy_one_sub πŸ“–mathematicalβ€”binEntropy
Real
instSub
instOne
β€”log_inv
mul_neg
sub_sub_cancel
add_comm
binEntropy_pos πŸ“–mathematicalReal
instLT
instZero
instOne
binEntropyβ€”sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
log_pos
one_lt_invβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_pos'
mul_pos
binEntropy_strictAntiOn πŸ“–mathematicalβ€”StrictAntiOn
Real
instPreorder
binEntropy
Set.Icc
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
qaryEntropy_two
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNat_natCast
qaryEntropy_strictAntiOn
le_refl
binEntropy_strictMonoOn πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
binEntropy
Set.Icc
instZero
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
qaryEntropy_two
qaryEntropy_strictMonoOn
le_refl
binEntropy_two_inv πŸ“–mathematicalβ€”binEntropy
Real
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
log
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
one_div
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
binEntropy_two_inv_add πŸ“–mathematicalβ€”binEntropy
Real
instAdd
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
β€”Nat.instAtLeastTwoHAddOfNat
binEntropy_one_sub
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.RingNF.add_neg
binEntropy_zero πŸ“–mathematicalβ€”binEntropy
Real
instZero
β€”inv_zero
log_zero
MulZeroClass.mul_zero
sub_zero
inv_one
log_one
add_zero
deriv2_binEntropy πŸ“–mathematicalβ€”Nat.iterate
deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
binEntropy
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
instOne
instMul
instSub
β€”deriv2_qaryEntropy
qaryEntropy_two
deriv2_qaryEntropy πŸ“–mathematicalβ€”Nat.iterate
deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
qaryEntropy
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
instOne
instMul
instSub
β€”Filter.mp_mem
eventually_ne_nhds
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
Filter.univ_mem'
deriv_qaryEntropy
Filter.EventuallyEq.deriv_eq
deriv_fun_sub
DifferentiableAt.add
DifferentiableAt.log
DifferentiableAt.const_sub
differentiableAt_id
sub_ne_zero
differentiableAt_log
deriv.log
differentiableAt_fun_id
deriv_id''
one_div
deriv_const_sub
deriv_fun_add
sub_ne_zero_of_ne
deriv_const'
zero_add
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
neg_div
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
mul_neg
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
deriv_zero_of_not_differentiableAt
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
sub_zero
div_zero
sub_self
MulZeroClass.mul_zero
deriv_binEntropy πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
binEntropy
instSub
log
instOne
β€”binEntropy_eq_negMulLog_add_negMulLog_one_sub'
deriv_fun_add
differentiableAt_negMulLog
DifferentiableAt.fun_comp'
sub_ne_zero
DifferentiableAt.const_sub
differentiableAt_id
deriv_comp_const_sub
deriv_negMulLog
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
deriv_zero_of_not_differentiableAt
Iff.not
differentiableAt_binEntropy_iff_ne_zero_one
Mathlib.Tactic.Push.not_and_or_eq
sub_zero
log_one
log_zero
sub_self
deriv_qaryEntropy πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
qaryEntropy
instSub
instAdd
log
instNatCast
instOne
β€”deriv_fun_add
DifferentiableAt.mul_const
differentiableAt_id
differentiableAt_binEntropy
Int.cast_sub
Int.cast_natCast
Int.cast_one
deriv_mul_const
deriv_id''
one_mul
deriv_binEntropy
add_sub_assoc
differentiableAt_binEntropy πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
binEntropy
β€”log_inv
mul_neg
DifferentiableAt.fun_add
DifferentiableAt.fun_neg
DifferentiableAt.fun_mul
differentiableAt_id
DifferentiableAt.log
DifferentiableAt.const_sub
sub_ne_zero
differentiableAt_binEntropy_iff_ne_zero_one πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
binEntropy
β€”log_inv
mul_neg
DifferentiableAt.fun_add_iff_left
DifferentiableAt.fun_mul
DifferentiableAt.const_sub
differentiableAt_id
DifferentiableAt.log
DifferentiableAt.fun_inv
sub_zero
NeZero.charZero_one
RCLike.charZero_rclike
inv_one
sub_sub_cancel
sub_self
differentiableAt_iff_comp_const_sub
DifferentiableAt.fun_add_iff_right
differentiableAt_binEntropy
differentiableAt_qaryEntropy πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
qaryEntropy
β€”DifferentiableAt.fun_add
DifferentiableAt.mul_const
differentiableAt_id
differentiableAt_binEntropy
hasDerivAt_binEntropy πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
binEntropy
instSub
log
instOne
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
DifferentiableAt.hasDerivAt
differentiableAt_binEntropy
deriv_binEntropy
hasDerivAt_qaryEntropy πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
qaryEntropy
instSub
instAdd
log
instNatCast
instOne
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
DifferentiableAt.hasDerivAt
differentiableAt_qaryEntropy
deriv_qaryEntropy
not_continuousAt_deriv_qaryEntropy_one πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
deriv
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
qaryEntropy
instOne
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Filter.tendsto_atBot_add_const_left
instIsOrderedAddMonoid
not_continuousAt_of_tendsto
Filter.Tendsto.congr'
Filter.mp_mem
Nat.instAtLeastTwoHAddOfNat
Ioo_mem_nhdsLT
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Mathlib.Meta.NormNum.isNNRat_lt_true
instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Filter.univ_mem'
deriv_qaryEntropy
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
sub_eq_zero_of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
neg_eq_zero
nhdsLT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMinOrderOfNontrivial
instNontrivial
nhdsWithin_le_nhds
instNoBotOrderOfNoMinOrder
not_continuousAt_deriv_qaryEntropy_zero πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
deriv
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
qaryEntropy
instZero
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Filter.tendsto_atTop_add_const_left
instIsOrderedAddMonoid
not_continuousAt_of_tendsto
Filter.Tendsto.congr'
Filter.mp_mem
Nat.instAtLeastTwoHAddOfNat
Ioo_mem_nhdsGT
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Mathlib.Meta.NormNum.isNNRat_lt_true
instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Filter.univ_mem'
deriv_qaryEntropy
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
sub_eq_zero_of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
neg_eq_zero
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMaxOrderOfNontrivial
instNontrivial
nhdsWithin_le_nhds
instNoTopOrderOfNoMaxOrder
qaryEntropy_continuous πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
qaryEntropy
β€”Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
continuous_id'
continuous_const
binEntropy_continuous
qaryEntropy_neg_of_neg πŸ“–mathematicalReal
instLT
instZero
qaryEntropyβ€”add_neg_of_nonpos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
instIsOrderedRing
LT.lt.le
log_intCast_nonneg
binEntropy_neg_of_neg
qaryEntropy_nonneg πŸ“–mathematicalReal
instLE
instZero
instOne
qaryEntropyβ€”LE.le.eq_or_lt
qaryEntropy_zero
one_mul
binEntropy_one
add_zero
log_intCast_nonneg
LT.lt.le
qaryEntropy_pos
qaryEntropy_nonpos_of_nonpos πŸ“–mathematicalReal
instLE
instZero
qaryEntropyβ€”add_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
instIsOrderedRing
log_intCast_nonneg
binEntropy_nonpos_of_nonpos
qaryEntropy_one πŸ“–mathematicalβ€”qaryEntropy
Real
instOne
log
instIntCast
β€”Int.cast_sub
Int.cast_natCast
Int.cast_one
one_mul
binEntropy_one
add_zero
qaryEntropy_pos πŸ“–mathematicalReal
instLT
instZero
instOne
qaryEntropyβ€”binEntropy_pos
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
le_of_lt
log_intCast_nonneg
qaryEntropy_strictAntiOn πŸ“–mathematicalβ€”StrictAntiOn
Real
instPreorder
qaryEntropy
Set.Icc
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
instNatCast
β€”strictAntiOn_of_deriv_neg
convex_Icc
instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instIsStrictOrderedRing
Continuous.continuousOn
qaryEntropy_continuous
Nat.instAtLeastTwoHAddOfNat
Nat.ofNat_le_cast
IsOrderedAddMonoid.toAddLeftMono
instZeroLEOneClass
RCLike.charZero_rclike
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
instNoMinOrderOfNontrivial
instNontrivial
instNoMaxOrderOfNontrivial
deriv_qaryEntropy
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
one_div
sub_eq_zero_of_eq
ne_of_gt
lt_add_neg_iff_lt
log_mul
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
strictMonoOn_log
Set.mem_Ioi
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.add_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
inv_mul_cancelβ‚€
LT.lt.ne'
qaryEntropy_strictMonoOn πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
qaryEntropy
Set.Icc
instZero
instSub
instOne
DivInvMonoid.toDiv
instDivInvMonoid
instNatCast
β€”strictMonoOn_of_deriv_pos
convex_Icc
instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instIsStrictOrderedRing
Continuous.continuousOn
qaryEntropy_continuous
Nat.instAtLeastTwoHAddOfNat
Nat.ofNat_le_cast
IsOrderedAddMonoid.toAddLeftMono
instZeroLEOneClass
RCLike.charZero_rclike
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
NeZero.charZero_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
one_div
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
instNoMaxOrderOfNontrivial
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
deriv_qaryEntropy
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
sub_eq_zero_of_eq
ne_of_gt
lt_add_neg_iff_lt
log_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
strictMonoOn_log
Set.mem_Ioi
mul_sub
mul_one
IsUnit.mul_inv_cancel
mul_lt_mul_of_pos_left
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
qaryEntropy_two πŸ“–mathematicalβ€”qaryEntropy
binEntropy
β€”Int.cast_one
log_one
MulZeroClass.mul_zero
zero_add
qaryEntropy_zero πŸ“–mathematicalβ€”qaryEntropy
Real
instZero
β€”Int.cast_sub
Int.cast_natCast
Int.cast_one
MulZeroClass.zero_mul
binEntropy_zero
add_zero
strictConcaveOn_qaryEntropy πŸ“–mathematicalβ€”StrictConcaveOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Icc
instPreorder
instZero
instOne
qaryEntropy
β€”strictConcaveOn_of_deriv2_neg
convex_Icc
instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instIsStrictOrderedRing
Continuous.continuousOn
qaryEntropy_continuous
deriv2_qaryEntropy
div_neg_of_neg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.NormNum.isInt_lt_true
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Nat.cast_zero
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
instNoMinOrderOfNontrivial
instNoMaxOrderOfNontrivial
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
strictConcave_binEntropy πŸ“–mathematicalβ€”StrictConcaveOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Icc
instPreorder
instZero
instOne
binEntropy
β€”strictConcaveOn_qaryEntropy
qaryEntropy_two

---

← Back to Index