Documentation Verification Report

Choose

📁 Source: Mathlib/Analysis/SpecialFunctions/Choose.lean

Statistics

MetricCount
Definitions0
TheoremsisEquivalent_choose, isEquivalent_descFactorial, isTheta_choose
3
Total3

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isEquivalent_choose 📖mathematicalAsymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Nat.instPreorder
Real.instNatCast
Nat.choose
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Nat.factorial
Nat.choose_eq_descFactorial_div_factorial
Nat.cast_div
Nat.factorial_dvd_descFactorial
Nat.cast_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.factorial_ne_zero
Asymptotics.IsEquivalent.div
isEquivalent_descFactorial
Asymptotics.IsEquivalent.refl
isEquivalent_descFactorial 📖mathematicalAsymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Nat.instPreorder
Real.instNatCast
Nat.descFactorial
Monoid.toNatPow
Real.instMonoid
Nat.cast_one
pow_zero
Asymptotics.IsEquivalent.refl
Nat.cast_mul
pow_succ'
Asymptotics.IsEquivalent.mul
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
ne_of_gt
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Asymptotics.isEquivalent_iff_tendsto_one
Filter.tendsto_add_atTop_iff_nat
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
Nat.cast_add
tendsto_natCast_div_add_atTop
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRingReal
isTheta_choose 📖mathematicalAsymptotics.IsTheta
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instNatCast
Nat.choose
Monoid.toNatPow
Real.instMonoid
Asymptotics.IsEquivalent.trans_isTheta
isEquivalent_choose
div_eq_mul_inv
mul_comm
Asymptotics.IsTheta.const_mul_left
inv_ne_zero
Nat.cast_zero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.factorial_ne_zero
Asymptotics.isTheta_rfl

---

← Back to Index