Documentation Verification Report

CompareExp

📁 Source: Mathlib/Analysis/SpecialFunctions/CompareExp.lean

Statistics

MetricCount
DefinitionsIsExpCmpFilter
1
Theoremsabs_im_pow_eventuallyLE_exp_re, eventually_ne, isBigO_im_pow_re, isLittleO_cpow_exp, isLittleO_cpow_mul_exp, isLittleO_exp_cpow, isLittleO_im_pow_exp_re, isLittleO_log_norm_re, isLittleO_log_re_re, isLittleO_pow_mul_exp, isLittleO_zpow_mul_exp, isTheta_cpow_exp_re_mul_log, of_boundedUnder_abs_im, of_boundedUnder_im, of_isBigO_im_re_pow, of_isBigO_im_re_rpow, tendsto_abs_re, tendsto_norm, tendsto_re
19
Total20

Complex

Definitions

NameCategoryTheorems
IsExpCmpFilter 📖CompData
4 mathmath: IsExpCmpFilter.of_boundedUnder_im, IsExpCmpFilter.of_isBigO_im_re_pow, IsExpCmpFilter.of_isBigO_im_re_rpow, IsExpCmpFilter.of_boundedUnder_abs_im

Complex.IsExpCmpFilter

Theorems

NameKindAssumesProvesValidatesDepends On
abs_im_pow_eventuallyLE_exp_re 📖mathematicalComplex.IsExpCmpFilterFilter.EventuallyLE
Complex
Real
Real.instLE
Monoid.toNatPow
Real.instMonoid
abs
Real.lattice
Real.instAddGroup
Complex.im
Real.exp
Complex.re
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Real.abs_exp
one_mul
Asymptotics.IsLittleO.bound
isLittleO_im_pow_exp_re
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
eventually_ne 📖mathematicalComplex.IsExpCmpFilterFilter.Eventually
Complex
Complex.instZero
Filter.Tendsto.eventually_ne_atTop'
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
tendsto_re
isBigO_im_pow_re 📖mathematicalComplex.IsExpCmpFilterAsymptotics.IsBigO
Complex
Real
Real.norm
Monoid.toNatPow
Real.instMonoid
Complex.im
Real.exp
Complex.re
isLittleO_cpow_exp 📖mathematicalComplex.IsExpCmpFilter
Real
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Complex
Complex.instNorm
Complex.instPow
Complex.exp
Complex.instMul
Complex.ofReal
isTheta_cpow_exp_re_mul_log
Asymptotics.IsLittleO.of_norm_right
Complex.norm_exp
Complex.re_ofReal_mul
Asymptotics.IsEquivalent.tendsto_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
Asymptotics.IsEquivalent.symm
Asymptotics.IsEquivalent.sub_isLittleO
Asymptotics.IsEquivalent.refl
Asymptotics.IsLittleO.const_mul_right
NormedDivisionRing.toNormMulClass
LT.lt.ne'
Asymptotics.IsLittleO.const_mul_left
isLittleO_log_norm_re
Filter.Tendsto.const_mul_atTop
tendsto_re
isLittleO_cpow_mul_exp 📖mathematicalComplex.IsExpCmpFilter
Real
Real.instLT
Asymptotics.IsLittleO
Complex
Complex.instNorm
Complex.instMul
Complex.instPow
Complex.exp
Complex.ofReal
Filter.Eventually.mono
eventually_ne
mul_right_comm
Complex.cpow_add
add_sub_cancel
Asymptotics.IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
isLittleO_cpow_exp
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Complex.ofReal_sub
sub_mul
mul_assoc
Filter.EventuallyEq.refl
isLittleO_exp_cpow 📖mathematicalComplex.IsExpCmpFilter
Real
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Complex
Complex.instNorm
Complex.exp
Complex.instMul
Complex.ofReal
Complex.instPow
Complex.cpow_zero
one_mul
MulZeroClass.zero_mul
Complex.exp_zero
mul_one
isLittleO_cpow_mul_exp
isLittleO_im_pow_exp_re 📖mathematicalComplex.IsExpCmpFilterAsymptotics.IsLittleO
Complex
Real
Real.norm
Monoid.toNatPow
Real.instMonoid
Complex.im
Real.exp
Complex.re
Asymptotics.IsLittleO.of_pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
two_ne_zero
pow_mul'
isBigO_im_pow_re
pow_one
Asymptotics.IsLittleO.comp_tendsto
Nat.instAtLeastTwoHAddOfNat
Asymptotics.isLittleO_pow_pow_atTop_of_lt
Real.instIsStrictOrderedRing
instOrderTopologyReal
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Filter.Tendsto.comp
Real.tendsto_exp_atTop
tendsto_re
isLittleO_log_norm_re 📖mathematicalComplex.IsExpCmpFilterAsymptotics.IsLittleO
Complex
Real
Real.norm
Real.log
Norm.norm
Complex.instNorm
Complex.re
Nat.instAtLeastTwoHAddOfNat
Asymptotics.IsBigO.of_norm_eventuallyLE
Filter.Eventually.mono
Filter.Tendsto.eventually_ge_atTop
tendsto_re
Real.instIsOrderedRing
Real.instNontrivial
LE.le.trans
Complex.re_le_norm
lt_max_iff
LT.lt.trans_le
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.norm_of_nonneg
Real.log_nonneg
Real.log_mul
LT.lt.ne'
Real.log_le_log_iff
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_trans
zero_le_one
Complex.norm_le_sqrt_two_mul_max
Asymptotics.IsLittleO.add
Asymptotics.isLittleO_const_left
tendsto_abs_re
Asymptotics.isLittleO_iff_nat_mul_le
Filter.mp_mem
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
abs_im_pow_eventuallyLE_exp_re
Asymptotics.isLittleO_iff_nat_mul_le'
isLittleO_log_re_re
Filter.univ_mem'
le_total
max_eq_left
max_eq_right
Real.norm_eq_abs
abs_of_pos
Real.log_pos
Nat.cast_one
Real.log_pow
Real.log_le_iff_le_exp
pow_pos
LT.lt.trans
isLittleO_log_re_re 📖mathematicalComplex.IsExpCmpFilterAsymptotics.IsLittleO
Complex
Real
Real.norm
Real.log
Complex.re
Asymptotics.IsLittleO.comp_tendsto
Real.isLittleO_log_id_atTop
tendsto_re
isLittleO_pow_mul_exp 📖mathematicalComplex.IsExpCmpFilter
Real
Real.instLT
Asymptotics.IsLittleO
Complex
Complex.instNorm
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.exp
Complex.ofReal
Complex.cpow_natCast
isLittleO_cpow_mul_exp
isLittleO_zpow_mul_exp 📖mathematicalComplex.IsExpCmpFilter
Real
Real.instLT
Asymptotics.IsLittleO
Complex
Complex.instNorm
Complex.instMul
DivInvMonoid.toZPow
Complex.instDivInvMonoid
Complex.exp
Complex.ofReal
Complex.cpow_intCast
isLittleO_cpow_mul_exp
isTheta_cpow_exp_re_mul_log 📖mathematicalComplex.IsExpCmpFilterAsymptotics.IsTheta
Complex
Real
Complex.instNorm
Real.norm
Complex.instPow
Real.exp
Real.instMul
Complex.re
Real.log
Norm.norm
Complex.isTheta_cpow_const_rpow
eventually_ne
Filter.Eventually.mono
Real.rpow_def_of_pos
norm_pos_iff
mul_comm
of_boundedUnder_abs_im 📖mathematicalFilter.Tendsto
Complex
Real
Complex.re
Filter.atTop
Real.instPreorder
Filter.IsBoundedUnder
Real.instLE
abs
Real.lattice
Real.instAddGroup
Complex.im
Complex.IsExpCmpFilterof_isBigO_im_re_pow
pow_zero
Filter.IsBoundedUnder.isBigO_const
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
of_boundedUnder_im 📖mathematicalFilter.Tendsto
Complex
Real
Complex.re
Filter.atTop
Real.instPreorder
Filter.IsBoundedUnder
Real.instLE
Complex.im
Complex.IsExpCmpFilterof_boundedUnder_abs_im
Filter.isBoundedUnder_le_abs
Real.instIsOrderedAddMonoid
of_isBigO_im_re_pow 📖mathematicalFilter.Tendsto
Complex
Real
Complex.re
Filter.atTop
Real.instPreorder
Asymptotics.IsBigO
Real.norm
Complex.im
Monoid.toNatPow
Real.instMonoid
Complex.IsExpCmpFilterof_isBigO_im_re_rpow
Real.rpow_natCast
of_isBigO_im_re_rpow 📖mathematicalFilter.Tendsto
Complex
Real
Complex.re
Filter.atTop
Real.instPreorder
Asymptotics.IsBigO
Real.norm
Complex.im
Real.instPow
Complex.IsExpCmpFilterAsymptotics.IsLittleO.isBigO
Asymptotics.IsBigO.pow
NormedDivisionRing.toNormMulClass
NormedDivisionRing.to_normOneClass
Filter.Eventually.mono
Filter.Tendsto.eventually_ge_atTop
Real.rpow_mul
Real.rpow_natCast
Asymptotics.IsLittleO.comp_tendsto
isLittleO_rpow_exp_atTop
tendsto_abs_re 📖mathematicalComplex.IsExpCmpFilterFilter.Tendsto
Complex
Real
abs
Real.lattice
Real.instAddGroup
Complex.re
Filter.atTop
Real.instPreorder
Filter.Tendsto.comp
Filter.tendsto_abs_atTop_atTop
tendsto_re
tendsto_norm 📖mathematicalComplex.IsExpCmpFilterFilter.Tendsto
Complex
Real
Norm.norm
Complex.instNorm
Filter.atTop
Real.instPreorder
Filter.tendsto_atTop_mono
Complex.abs_re_le_norm
tendsto_abs_re
tendsto_re 📖mathematicalComplex.IsExpCmpFilterFilter.Tendsto
Complex
Real
Complex.re
Filter.atTop
Real.instPreorder

---

← Back to Index