Documentation Verification Report

Analytic

📁 Source: Mathlib/Analysis/SpecialFunctions/Complex/Analytic.lean

Statistics

MetricCount
Definitions0
Theoremsclog, cpow, im_ofReal, re_ofReal, clog, cpow, im_ofReal, re_ofReal, clog, cpow, im_ofReal, re_ofReal, clog, cpow, im_ofReal, re_ofReal, analyticAt_clog, analyticAt_log, analyticOnNhd_log, analyticOn_log
20
Total20

AnalyticAt

Theorems

NameKindAssumesProvesValidatesDepends On
clog 📖mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.logcomp
analyticAt_clog
cpow 📖mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.instPowanalyticWithinAt_univ
AnalyticWithinAt.cpow
im_ofReal 📖mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.ofReal
Real
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.im
comp
ContinuousLinearMap.analyticAt
restrictScalars
IsScalarTower.right
re_ofReal 📖mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.ofReal
Real
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.re
comp
ContinuousLinearMap.analyticAt
restrictScalars
IsScalarTower.right

AnalyticOn

Theorems

NameKindAssumesProvesValidatesDepends On
clog 📖mathematicalAnalyticOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.logAnalyticWithinAt.comp
AnalyticAt.analyticWithinAt
analyticAt_clog
cpow 📖mathematicalAnalyticOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.instPowAnalyticWithinAt.cpow
im_ofReal 📖mathematicalAnalyticOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.im
comp
ContinuousLinearMap.analyticOn
restrictScalars
IsScalarTower.right
Set.mapsTo_image
re_ofReal 📖mathematicalAnalyticOn
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.re
comp
ContinuousLinearMap.analyticOn
restrictScalars
IsScalarTower.right
Set.mapsTo_image

AnalyticOnNhd

Theorems

NameKindAssumesProvesValidatesDepends On
clog 📖mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.logAnalyticAt.comp
analyticAt_clog
cpow 📖mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.instPowAnalyticAt.cpow
im_ofReal 📖mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.im
comp
ContinuousLinearMap.analyticOnNhd
restrictScalars
IsScalarTower.right
Set.mapsTo_image
re_ofReal 📖mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.re
comp
ContinuousLinearMap.analyticOnNhd
restrictScalars
IsScalarTower.right
Set.mapsTo_image

AnalyticWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
clog 📖mathematicalAnalyticWithinAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.logAnalyticAt.comp_analyticWithinAt
analyticAt_clog
cpow 📖mathematicalAnalyticWithinAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set
Set.instMembership
Complex.slitPlane
Complex.instPowFilter.mp_mem
Filter.Tendsto.eventually_ne
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
continuousWithinAt_insert
Complex.slitPlane_ne_zero
Filter.univ_mem'
congr_of_eventuallyEq_insert
cexp
mul
clog
im_ofReal 📖mathematicalAnalyticWithinAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.im
comp
ContinuousLinearMap.analyticWithinAt
restrictScalars
IsScalarTower.right
Set.mapsTo_image
re_ofReal 📖mathematicalAnalyticWithinAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.image
Real
Complex.ofReal
Real.denselyNormedField
Real.normedAddCommGroup
Real.instRCLike
RCLike.toInnerProductSpaceReal
Complex.re
comp
ContinuousLinearMap.analyticWithinAt
restrictScalars
IsScalarTower.right
Set.mapsTo_image

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
analyticAt_clog 📖mathematicalComplex
Set
Set.instMembership
Complex.slitPlane
AnalyticAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.log
Complex.analyticAt_iff_eventually_differentiableAt
Complex.instCompleteSpace
Filter.mp_mem
IsOpen.eventually_mem
Complex.isOpen_slitPlane
Filter.univ_mem'
DifferentiableAt.clog
differentiableAt_id
analyticAt_log 📖mathematicalReal
Real.instLT
Real.instZero
AnalyticAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Complex.log_ofReal_re
AnalyticAt.re_ofReal
analyticAt_clog
analyticOnNhd_log 📖mathematicalAnalyticOnNhd
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Set.Ioi
Real.instPreorder
Real.instZero
analyticAt_log
analyticOn_log 📖mathematicalAnalyticOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Set.Ioi
Real.instPreorder
Real.instZero
AnalyticOnNhd.analyticOn
analyticOnNhd_log

---

← Back to Index