Documentation Verification Report

Arctan

📁 Source: Mathlib/Analysis/SpecialFunctions/Complex/Arctan.lean

Statistics

MetricCount
Definitionsarctan
1
Theoremsarctan_tan, arg_one_add_mem_Ioo, cos_ne_zero_of_arctan_bounds, hasSum_arctan, hasSum_arctan_aux, ofReal_arctan, tan_arctan, hasSum_arctan
8
Total9

Complex

Definitions

NameCategoryTheorems
arctan 📖CompOp
4 mathmath: ofReal_arctan, arctan_tan, tan_arctan, hasSum_arctan

Theorems

NameKindAssumesProvesValidatesDepends On
arctan_tan 📖mathematicalReal
Real.instLT
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
re
Real.instLE
arctan
tan
Nat.instAtLeastTwoHAddOfNat
cos_ne_zero_of_arctan_bounds
mul_div_mul_right
add_mul
Distrib.rightDistribClass
sub_mul
one_mul
mul_rotate
mul_div_cancel₀
sub_eq_add_neg
neg_mul
sin_neg
cos_neg
exp_mul_I
exp_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
log_exp
MulZeroClass.zero_mul
zero_add
zero_sub
mul_neg
neg_zero
add_zero
div_lt_iff₀'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
neg_div
le_div_iff₀'
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
I_mul_I
neg_neg
arg_one_add_mem_Ioo 📖mathematicalReal
Real.instLT
Norm.norm
Complex
instNorm
Real.instOne
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
arg
instAdd
instOne
Nat.instAtLeastTwoHAddOfNat
Set.mem_Ioo
abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_arg_lt_pi_div_two_iff
add_re
one_re
neg_lt_iff_pos_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
LE.le.trans_lt
abs_re_le_norm
cos_ne_zero_of_arctan_bounds 📖Real
Real.instLT
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
re
Real.instLE
Nat.instAtLeastTwoHAddOfNat
cos_ne_zero_iff
ext_iff
not_and_or
Nat.cast_one
Int.cast_ofNat
Int.cast_one
Int.cast_add
Int.cast_mul
ofReal_add
ofReal_mul
Mathlib.Tactic.Contrapose.contrapose₄
one_mul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mul_le_mul_iff_of_pos_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.pi_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
mul_div_assoc
mul_lt_mul_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
neg_eq_neg_one_mul
hasSum_arctan 📖mathematicalReal
Real.instLT
Norm.norm
Complex
instNorm
Real.instOne
HasSum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
DivInvMonoid.toDiv
instDivInvMonoid
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNeg
instOne
instNatCast
arctan
SummationFilter.unconditional
Nat.instAtLeastTwoHAddOfNat
HasSum.mul_left
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
HasSum.add
IsTopologicalSemiring.toContinuousAdd
hasSum_taylorSeries_log
norm_mul
norm_I
mul_one
hasSum_taylorSeries_neg_log
Equiv.hasSum_iff
hasSum_arctan_aux
Distrib.rightDistribClass
HasSum.prod_fiberwise
TopologicalSpace.PseudoMetrizableSpace.regularSpace
PseudoEMetricSpace.pseudoMetrizableSpace
mul_comm
Fin.sum_univ_two
Odd.neg_one_pow
add_zero
neg_add_cancel
MulZeroClass.zero_mul
zero_div
MulZeroClass.mul_zero
zero_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Even.neg_one_pow
mul_div_assoc
mul_assoc
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Nat.cast_one
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
mul_pow
pow_succ'
pow_mul
I_sq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.mul_pp_pf_overlap
I_mul_I
neg_neg
one_mul
hasSum_fintype
SummationFilter.instLeAtTopUnconditional
hasSum_arctan_aux 📖mathematicalReal
Real.instLT
Norm.norm
Complex
instNorm
Real.instOne
instAdd
log
instOne
instMul
I
instNeg
instSub
DivInvMonoid.toDiv
instDivInvMonoid
mem_slitPlane_iff_arg
mem_slitPlane_of_norm_lt_one
norm_mul
norm_I
mul_one
norm_neg
log_inv
sub_eq_add_neg
log_mul_eq_add_log_iff
Iff.ne
inv_eq_zero
Nat.instAtLeastTwoHAddOfNat
arg_one_add_mem_Ioo
arg_inv
Real.instIsOrderedAddMonoid
neg_neg
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
LT.lt.le
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
div_eq_mul_inv
ofReal_arctan 📖mathematicalofReal
Real.arctan
arctan
Real.tan_arctan
ofReal_tan
arctan_tan
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne
Real.arctan_lt_pi_div_two
Real.neg_pi_div_two_lt_arctan
LT.lt.le
tan_arctan 📖mathematicaltan
arctan
div_div_eq_mul_div
div_mul_cancel₀
two_ne_zero
CharZero.NeZero.two
instCharZero
div_mul_eq_mul_div
mul_div_mul_right
exp_ne_zero
sub_mul
add_mul
Distrib.rightDistribClass
exp_add
neg_mul
neg_add_cancel
exp_zero
Nat.instAtLeastTwoHAddOfNat
two_mul
Mathlib.Tactic.Contrapose.contrapose₄
neg_neg
neg_one_mul
div_I
div_eq_iff
I_ne_zero
add_eq_zero_iff_neg_eq
one_mul
sub_eq_zero
arctan.eq_1
mul_rotate
mul_assoc
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
neg_div
mul_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
I_sq
exp_log
div_ne_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_congr
I_mul_I

Real

Theorems

NameKindAssumesProvesValidatesDepends On
hasSum_arctan 📖mathematicalReal
instLT
Norm.norm
norm
instOne
HasSum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
DivInvMonoid.toDiv
instDivInvMonoid
instMul
Monoid.toNatPow
instMonoid
instNeg
instNatCast
arctan
SummationFilter.unconditional
Nat.cast_one
Int.cast_pow
Int.cast_neg
Int.cast_one
Complex.ofReal_pow
Complex.ofReal_neg
Nat.instAtLeastTwoHAddOfNat
Nat.cast_add
Nat.cast_mul
Complex.ofReal_add
Complex.ofReal_mul
Complex.hasSum_arctan
Complex.norm_real

---

← Back to Index