Documentation Verification Report

Arg

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean

Statistics

MetricCount
Definitionsarg, Arg
2
Theoremsabs_arg_inv, abs_arg_le_pi, abs_arg_le_pi_div_two_iff, abs_arg_lt_pi_div_two_iff, arg_I, arg_coe_angle_eq_iff, arg_coe_angle_eq_iff_eq_toReal, arg_coe_angle_toReal_eq_arg, arg_conj, arg_conj_coe_angle, arg_cos_add_sin_mul_I, arg_cos_add_sin_mul_I_coe_angle, arg_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, arg_div_coe_angle, arg_div_self, arg_eq_arg_iff, arg_eq_neg_pi_div_two_iff, arg_eq_nhds_of_im_neg, arg_eq_nhds_of_im_pos, arg_eq_nhds_of_re_neg_of_im_neg, arg_eq_nhds_of_re_neg_of_im_pos, arg_eq_nhds_of_re_pos, arg_eq_pi_div_two_iff, arg_eq_pi_iff, arg_eq_pi_iff_lt_zero, arg_eq_zero_iff, arg_eq_zero_iff_zero_le, arg_exp, arg_exp_mul_I, arg_inv, arg_inv_coe_angle, arg_le_pi, arg_le_pi_div_two_iff, arg_lt_pi_div_two_iff, arg_lt_pi_iff, arg_mem_Ioc, arg_mul, arg_mul_coe_angle, arg_mul_cos_add_sin_mul_I, arg_mul_cos_add_sin_mul_I_coe_angle, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_mul_cos_add_sin_mul_I_sub, arg_mul_eq_add_arg_iff, arg_mul_real, arg_neg_I, arg_neg_coe_angle, arg_neg_eq_arg_add_pi_iff, arg_neg_eq_arg_add_pi_of_im_neg, arg_neg_eq_arg_sub_pi_iff, arg_neg_eq_arg_sub_pi_of_im_pos, arg_neg_iff, arg_neg_one, arg_nonneg_iff, arg_ofReal_of_neg, arg_ofReal_of_nonneg, arg_of_im_neg, arg_of_im_nonneg_of_ne_zero, arg_of_im_pos, arg_of_re_neg_of_im_neg, arg_of_re_neg_of_im_nonneg, arg_of_re_nonneg, arg_one, arg_pow_coe_angle, arg_real_mul, arg_zero, arg_zpow_coe_angle, continuousAt_arg, continuousAt_arg_coe_angle, continuousOn_arg, continuousWithinAt_arg_of_re_neg_of_im_zero, cos_arg, exp_mem_slitPlane, ext_norm_arg, ext_norm_arg_iff, image_exp_Ioc_eq_sphere, mem_slitPlane_iff_arg, natCast_arg, neg_pi_div_two_le_arg_iff, neg_pi_div_two_lt_arg_iff, neg_pi_lt_arg, norm_eq_one_iff, norm_eq_one_iff', norm_mul_cos_add_sin_mul_I, norm_mul_cos_arg, norm_mul_exp_arg_mul_I, norm_mul_sin_arg, ofNat_arg, range_arg, range_exp_mul_I, sin_arg, slitPlane_arg_ne_pi, tan_arg, tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero, tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, toIocMod_arg
96
Total98

Complex

Definitions

NameCategoryTheorems
arg πŸ“–CompOp
131 mathmath: log_conj_eq_ite, isTheta_exp_arg_mul_im, Circle.exp_arg, Circle.injective_arg, continuousWithinAt_arg_of_re_neg_of_im_zero, arg_neg_I, arg_cos_add_sin_mul_I_coe_angle, measurable_arg, arg_div_self, continuousOn_arg, arg_of_re_nonneg, arg_coe_angle_eq_iff, oangle, arg_le_pi, AddCircle.homeomorphCircle'_symm_apply, arg_one, neg_pi_div_two_lt_arg_iff, arg_mul_eq_add_arg_iff, arg_le_pi_div_two_iff, log_inv_eq_ite, continuousAt_arg, tan_arg, arg_cos_add_sin_mul_I, arg_of_re_neg_of_im_nonneg, ofNat_arg, arg_coe_angle_eq_iff_eq_toReal, arg_of_im_pos, arg_neg_eq_arg_sub_pi_of_im_pos, arg_ofReal_of_nonneg, Circle.arg_eq_arg, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, norm_cpow_of_ne_zero, norm_mul_cos_arg, norm_cpow_of_imp, abs_arg_le_pi, arg_mul_cos_add_sin_mul_I, polarCoord_apply, cpow_ofReal_re, norm_add_eq_iff, tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, arg_neg_eq_arg_add_pi_iff, inv_cpow_eq_ite', arg_one_add_mem_Ioo, arg_exp_mul_I, arg_of_re_neg_of_im_neg, IsSelfAdjoint.cfc_arg, arg_lt_pi_div_two_iff, arg_mul_cos_add_sin_mul_I_coe_angle, arg_mem_Ioc, tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero, Real.Angle.arg_toCircle, arg_eq_zero_iff_zero_le, angle_eq_abs_arg, arg_zero, neg_pi_lt_arg, inv_cpow_eq_ite, Circle.invOn_arg_exp, arg_neg_eq_arg_add_pi_of_im_neg, arg_conj, arg_eq_nhds_of_im_neg, IsPrimitiveRoot.arg_eq_zero_iff, arg_lt_pi_iff, arg_of_im_nonneg_of_ne_zero, arg_eq_pi_div_two_iff, range_arg, log_mul_eq_add_log_iff, conj_cpow_eq_ite, norm_mul_cos_add_sin_mul_I, abs_arg_inv, Circle.leftInverse_exp_arg, norm_mul_exp_arg_mul_I, abs_arg_le_pi_div_two_iff, arg_eq_arg_iff, continuousAt_arg_coe_angle, arg_div_coe_angle, AEMeasurable.carg, log_im, arg_neg_one, arg_neg_iff, toIocMod_arg, arg_of_im_neg, arg_eq_zero_iff, abs_arg_lt_pi_div_two_iff, ext_norm_arg_iff, arg_conj_coe_angle, arg_mul_real, arg_inv, norm_sub_eq_iff, cpow_ofReal_im, arg_coe_angle_toReal_eq_arg, polarCoord_apply, sameRay_iff, sameRay_iff_arg_div_eq_zero, arg_eq_nhds_of_im_pos, arg_real_mul, angle_one_left, neg_pi_div_two_le_arg_iff, angle_one_right, arg_eq_nhds_of_re_pos, arg_pow_coe_angle, arg_ofReal_of_neg, Circle.arg_exp, arg_eq_nhds_of_re_neg_of_im_pos, arg_nonneg_iff, arg_inv_coe_angle, arg_exp, IsPrimitiveRoot.arg, Orientation.oangle_map_complex, natCast_arg, norm_cpow_le, arg_eq_nhds_of_re_neg_of_im_neg, arg_mul_cos_add_sin_mul_I_sub, Unitary.argSelfAdjoint_coe, arg_mul_coe_angle, Measurable.carg, arg_neg_eq_arg_sub_pi_iff, arg_I, arg_eq_pi_iff, arg_zpow_coe_angle, arg_cos_add_sin_mul_I_eq_toIocMod, Circle.argEquiv_apply_coe, sin_arg, IsPrimitiveRoot.arg_eq_pi_iff, cos_arg, arg_eq_neg_pi_div_two_iff, Circle.argPartialEquiv_apply, arg_eq_pi_iff_lt_zero, cpow_ofReal, norm_mul_sin_arg, arg_neg_coe_angle

Theorems

NameKindAssumesProvesValidatesDepends On
abs_arg_inv πŸ“–mathematicalβ€”abs
Real
Real.lattice
Real.instAddGroup
arg
Complex
instInv
β€”arg_inv
abs_neg
abs_arg_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
arg
Real.pi
β€”abs_le
Real.instIsOrderedAddMonoid
LT.lt.le
neg_pi_lt_arg
arg_le_pi
abs_arg_le_pi_div_two_iff πŸ“–mathematicalβ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
arg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
re
β€”Nat.instAtLeastTwoHAddOfNat
abs_le
Real.instIsOrderedAddMonoid
arg_le_pi_div_two_iff
neg_pi_div_two_le_arg_iff
not_le
abs_arg_lt_pi_div_two_iff πŸ“–mathematicalβ€”Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
arg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
re
Complex
instZero
β€”Nat.instAtLeastTwoHAddOfNat
abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
arg_lt_pi_div_two_iff
neg_pi_div_two_lt_arg_iff
eq_or_ne
arg_I πŸ“–mathematicalβ€”arg
I
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_I
div_self
NeZero.charZero_one
RCLike.charZero_rclike
Real.arcsin_one
arg_coe_angle_eq_iff πŸ“–mathematicalβ€”Real.Angle.coe
arg
β€”arg_coe_angle_toReal_eq_arg
arg_coe_angle_eq_iff_eq_toReal πŸ“–mathematicalβ€”Real.Angle.coe
arg
Real.Angle.toReal
β€”arg_coe_angle_toReal_eq_arg
arg_coe_angle_toReal_eq_arg πŸ“–mathematicalβ€”Real.Angle.toReal
Real.Angle.coe
arg
β€”Real.Angle.toReal_coe_eq_self_iff_mem_Ioc
arg_mem_Ioc
arg_conj πŸ“–mathematicalβ€”arg
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Real
Real.pi
Real.decidableEq
Real.instNeg
β€”norm_conj
neg_div
neg_neg
Real.arcsin_neg
lt_trichotomy
LT.lt.not_ge
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
add_comm
LT.lt.ne
not_le
neg_sub
sub_neg_eq_add
neg_zero
zero_div
Real.arcsin_zero
zero_add
sub_eq_neg_add
neg_add_rev
LE.le.not_gt
arg_conj_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”arg_conj
Real.Angle.neg_coe_pi
arg_cos_add_sin_mul_I πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
arg
Complex
instAdd
cos
ofReal
instMul
sin
I
β€”one_mul
ofReal_one
arg_mul_cos_add_sin_mul_I
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
arg_cos_add_sin_mul_I_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
instAdd
ofReal
Real.Angle.cos
instMul
Real.Angle.sin
I
β€”one_mul
ofReal_one
arg_mul_cos_add_sin_mul_I_coe_angle
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
arg_cos_add_sin_mul_I_eq_toIocMod πŸ“–mathematicalβ€”arg
Complex
instAdd
cos
ofReal
instMul
sin
I
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
one_mul
ofReal_one
arg_mul_cos_add_sin_mul_I_eq_toIocMod
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
arg_cos_add_sin_mul_I_sub πŸ“–mathematicalβ€”Real
Real.instSub
arg
Complex
instAdd
cos
ofReal
instMul
sin
I
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instIntCast
Int.floor
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
one_mul
ofReal_one
arg_mul_cos_add_sin_mul_I_sub
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
arg_div_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
DivInvMonoid.toDiv
instDivInvMonoid
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”div_eq_mul_inv
arg_mul_coe_angle
inv_ne_zero
arg_inv_coe_angle
sub_eq_add_neg
arg_div_self πŸ“–mathematicalβ€”arg
Complex
DivInvMonoid.toDiv
instDivInvMonoid
Real
Real.instZero
β€”eq_or_ne
div_zero
arg_zero
div_self
arg_one
arg_eq_arg_iff πŸ“–mathematicalβ€”arg
Complex
instMul
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Norm.norm
instNorm
β€”norm_mul
NormedDivisionRing.toNormMulClass
norm_div
norm_real
norm_norm
div_mul_cancelβ‚€
norm_ne_zero_iff
ofReal_div
arg_real_mul
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
arg_eq_neg_pi_div_two_iff πŸ“–mathematicalβ€”arg
Real
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
re
Real.instZero
Real.instLT
im
β€”Nat.instAtLeastTwoHAddOfNat
arg_zero
RCLike.charZero_rclike
norm_mul_cos_add_sin_mul_I
ofReal_neg
ofReal_div
cos_neg
cos_pi_div_two
sin_neg
sin_pi_div_two
neg_mul
one_mul
zero_add
mul_neg
MulZeroClass.mul_zero
mul_one
sub_self
neg_zero
add_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
arg_neg_I
arg_real_mul
neg_pos
mk_eq_add_mul_I
neg_neg
arg_eq_nhds_of_im_neg πŸ“–mathematicalReal
Real.instLT
im
Real.instZero
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
arg
Real.instNeg
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
instNorm
β€”Filter.Eventually.mono
Filter.Tendsto.eventually
Continuous.tendsto
continuous_im
gt_mem_nhds
instOrderTopologyReal
arg_of_im_neg
arg_eq_nhds_of_im_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
im
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
arg
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
instNorm
β€”Filter.Eventually.mono
Filter.Tendsto.eventually
Continuous.tendsto
continuous_im
lt_mem_nhds
instOrderTopologyReal
arg_of_im_pos
arg_eq_nhds_of_re_neg_of_im_neg πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
arg
Real.instSub
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
instNeg
Norm.norm
instNorm
Real.pi
β€”IsOpen.eventually_mem
IsOpen.and
isOpen_lt
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
continuous_re
continuous_zero
continuous_im
Filter.Eventually.mono
arg_of_re_neg_of_im_neg
arg_eq_nhds_of_re_neg_of_im_pos πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
arg
Real.instAdd
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
instNeg
Norm.norm
instNorm
Real.pi
β€”IsOpen.eventually_mem
IsOpen.and
isOpen_lt
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
continuous_re
continuous_zero
continuous_im
Filter.Eventually.mono
arg_of_re_neg_of_im_nonneg
LT.lt.le
arg_eq_nhds_of_re_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
arg
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
Norm.norm
instNorm
β€”Filter.Eventually.mono
Filter.Tendsto.eventually
Continuous.tendsto
continuous_re
lt_mem_nhds
instOrderTopologyReal
arg_of_re_nonneg
LT.lt.le
arg_eq_pi_div_two_iff πŸ“–mathematicalβ€”arg
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
re
Real.instZero
Real.instLT
im
β€”Nat.instAtLeastTwoHAddOfNat
arg_zero
LT.lt.ne
Real.pi_div_two_pos
norm_mul_cos_add_sin_mul_I
ofReal_div
cos_pi_div_two
sin_pi_div_two
one_mul
zero_add
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
arg_I
arg_real_mul
ofReal_mul'
I_re
I_im
arg_eq_pi_iff πŸ“–mathematicalβ€”arg
Real.pi
Real
Real.instLT
re
Real.instZero
im
β€”arg_zero
Real.pi_ne_zero
norm_mul_cos_add_sin_mul_I
cos_pi
sin_pi
MulZeroClass.zero_mul
add_zero
mul_neg
mul_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
neg_zero
arg_neg_one
arg_real_mul
neg_pos
ofReal_neg
neg_neg
arg_eq_pi_iff_lt_zero πŸ“–mathematicalβ€”arg
Real.pi
Complex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
β€”arg_eq_pi_iff
arg_eq_zero_iff πŸ“–mathematicalβ€”arg
Real
Real.instZero
Real.instLE
re
im
β€”norm_mul_cos_add_sin_mul_I
cos_zero
sin_zero
MulZeroClass.zero_mul
add_zero
mul_one
arg_ofReal_of_nonneg
arg_eq_zero_iff_zero_le πŸ“–mathematicalβ€”arg
Real
Real.instZero
Complex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
β€”arg_eq_zero_iff
nonneg_iff
arg_exp πŸ“–mathematicalβ€”arg
exp
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
im
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
exp_mul_I
ofReal_exp
toIocMod.eq_1
ofReal_sub
ofReal_zsmul
ofReal_mul
Function.Periodic.sub_zsmul_eq
exp_mul_I_periodic
exp_add
re_add_im
arg_mul_cos_add_sin_mul_I
Real.exp_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
toIocMod_mem_Ioc
arg_exp_mul_I πŸ“–mathematicalβ€”arg
exp
Complex
instMul
ofReal
I
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
arg_exp
toIocMod.congr_simp
mul_one
MulZeroClass.mul_zero
add_zero
arg_inv πŸ“–mathematicalβ€”arg
Complex
instInv
Real
Real.pi
Real.decidableEq
Real.instNeg
β€”arg_conj
inv_def
mul_comm
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
inv_zero
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.mul_zero
arg_zero
arg_real_mul
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
arg_inv_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
instInv
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”arg_inv
Real.Angle.neg_coe_pi
arg_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
arg
Real.pi
β€”arg_mem_Ioc
arg_le_pi_div_two_iff πŸ“–mathematicalβ€”Real
Real.instLE
arg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
re
Real.instLT
im
β€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
arg_of_re_nonneg
LT.lt.not_ge
LE.le.not_gt
not_le
arg_of_re_neg_of_im_nonneg
sub_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
half_sub
CharZero.NeZero.two
RCLike.charZero_rclike
Real.neg_pi_div_two_lt_arcsin
neg_im
neg_div
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
LT.lt.ne
abs_of_nonneg
abs_im_lt_norm
arg_of_re_neg_of_im_neg
LE.le.trans
sub_le_self
LT.lt.le
Real.pi_pos
Real.arcsin_le_pi_div_two
arg_lt_pi_div_two_iff πŸ“–mathematicalβ€”Real
Real.instLT
arg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instZero
re
im
Complex
instZero
β€”Nat.instAtLeastTwoHAddOfNat
lt_iff_le_and_ne
arg_le_pi_div_two_iff
arg_eq_pi_div_two_iff
lt_trichotomy
LT.lt.ne
LT.lt.not_ge
LT.lt.not_gt
LT.lt.le
LT.lt.ne'
arg_lt_pi_iff πŸ“–mathematicalβ€”Real
Real.instLT
arg
Real.pi
Real.instLE
Real.instZero
re
β€”LE.le.lt_iff_ne
arg_le_pi
not_iff_comm
not_le
arg_eq_pi_iff
arg_mem_Ioc πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
arg
β€”Real.pi_pos
eq_or_ne
arg_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
existsUnique_add_zsmul_mem_Ioc
Real.instArchimedean
Real.two_pi_pos
norm_mul_cos_add_sin_mul_I
cos_add_int_mul_two_pi
sin_add_int_mul_two_pi
arg_mul_cos_add_sin_mul_I
norm_pos_iff
zsmul_eq_mul
two_mul
neg_add_cancel_left
ofReal_add
ofReal_mul
arg_mul πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Real.instAdd
arg
Complex
instMul
β€”arg_mul_eq_add_arg_iff
arg_mul_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
instMul
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”ofReal_cos
ofReal_sin
cos_add_sin_I
ofReal_add
add_mul
Distrib.rightDistribClass
exp_add
ofReal_mul
mul_assoc
mul_comm
norm_mul_exp_arg_mul_I
arg_mul_cos_add_sin_mul_I_coe_angle
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
arg_mul_cos_add_sin_mul_I πŸ“–mathematicalReal
Real.instLT
Real.instZero
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
arg
Complex
instMul
ofReal
instAdd
cos
sin
I
β€”norm_mul
NormedDivisionRing.toNormMulClass
norm_of_nonneg
LT.lt.le
norm_cos_add_sin_mul_I
mul_one
re_ofReal_mul
mul_nonneg_iff_right_nonneg_of_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_ofReal_mul
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
LT.lt.ne'
neg_div
Nat.instAtLeastTwoHAddOfNat
Real.cos_nonneg_of_mem_Icc
Real.arcsin_sin'
not_le
not_and_or
Set.mem_Icc
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.cos_add_pi
Real.cos_pos_of_mem_Ioo
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.sub_subst
CancelDenoms.neg_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
CancelDenoms.add_subst
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.sin_neg_of_neg_of_neg_pi_lt
LT.lt.not_ge
Real.sin_add_pi
Real.arcsin_sin
le_of_not_gt
add_sub_cancel_right
Real.cos_neg_of_pi_div_two_lt_of_lt
Real.sin_nonneg_of_mem_Icc
Real.sin_sub_pi
sub_add_cancel
arg_mul_cos_add_sin_mul_I_coe_angle πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.Angle.coe
arg
Complex
instMul
ofReal
instAdd
Real.Angle.cos
Real.Angle.sin
I
β€”Real.Angle.induction_on
Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
ofReal_cos
ofReal_sin
arg_mul_cos_add_sin_mul_I_eq_toIocMod
Real.Angle.coe_toIocMod
arg_mul_cos_add_sin_mul_I_eq_toIocMod πŸ“–mathematicalReal
Real.instLT
Real.instZero
arg
Complex
instMul
ofReal
instAdd
cos
sin
I
toIocMod
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
arg_real_mul
exp_mul_I
arg_exp_mul_I
arg_mul_cos_add_sin_mul_I_sub πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instSub
arg
Complex
instMul
ofReal
instAdd
cos
sin
I
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.instIntCast
Int.floor
Real.instRing
Real.linearOrder
Real.instFloorRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.two_pi_pos
arg_mul_cos_add_sin_mul_I_eq_toIocMod
toIocMod_sub_self
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Real.instIsStrictOrderedRing
FloorRing.archimedean
toIocDiv_eq_neg_floor
zsmul_eq_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
mul_one
arg_mul_eq_add_arg_iff πŸ“–mathematicalβ€”arg
Complex
instMul
Real
Real.instAdd
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
β€”arg_coe_angle_toReal_eq_arg
arg_mul_coe_angle
Real.Angle.coe_add
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc
arg_mul_real πŸ“–mathematicalReal
Real.instLT
Real.instZero
arg
Complex
instMul
ofReal
β€”arg_real_mul
mul_comm
arg_neg_I πŸ“–mathematicalβ€”arg
Complex
instNeg
I
Real
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
neg_zero
norm_neg
norm_I
div_one
Real.arcsin_neg
Real.arcsin_one
arg_neg_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
instNeg
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.pi
β€”lt_trichotomy
arg_neg_eq_arg_add_pi_of_im_neg
Real.Angle.coe_add
ext
arg_ofReal_of_neg
ofReal_neg
arg_ofReal_of_nonneg
LT.lt.le
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
two_mul
Real.Angle.coe_two_pi
Real.Angle.coe_zero
Left.neg_neg_iff
zero_add
arg_neg_eq_arg_sub_pi_of_im_pos
Real.Angle.coe_sub
Real.Angle.sub_coe_pi_eq_add_coe_pi
arg_neg_eq_arg_add_pi_iff πŸ“–mathematicalβ€”arg
Complex
instNeg
Real
Real.instAdd
Real.pi
Real.instLT
im
Real.instZero
re
β€”lt_trichotomy
arg_neg_eq_arg_add_pi_of_im_neg
ext
arg_ofReal_of_neg
ofReal_neg
arg_ofReal_of_nonneg
LT.lt.le
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
RCLike.charZero_rclike
LT.lt.not_gt
neg_zero
arg_zero
zero_add
Real.pi_ne_zero
Left.neg_neg_iff
arg_neg_eq_arg_sub_pi_of_im_pos
sub_eq_add_neg
LT.lt.ne
arg_neg_eq_arg_add_pi_of_im_neg πŸ“–mathematicalReal
Real.instLT
im
Real.instZero
arg
Complex
instNeg
Real.instAdd
Real.pi
β€”arg_of_im_neg
arg_of_im_pos
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_neg
neg_div
Real.arccos_neg
add_comm
arg_neg_eq_arg_sub_pi_iff πŸ“–mathematicalβ€”arg
Complex
instNeg
Real
Real.instSub
Real.pi
Real.instLT
Real.instZero
im
re
β€”lt_trichotomy
arg_neg_eq_arg_add_pi_of_im_neg
sub_eq_add_neg
AddLeftCancelSemigroup.toIsLeftCancelAdd
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
RCLike.charZero_rclike
LT.lt.not_gt
LT.lt.ne
ext
arg_ofReal_of_neg
ofReal_neg
arg_ofReal_of_nonneg
LT.lt.le
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_self
neg_zero
arg_zero
zero_sub
Left.neg_neg_iff
arg_neg_eq_arg_sub_pi_of_im_pos
arg_neg_eq_arg_sub_pi_of_im_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
im
arg
Complex
instNeg
Real.instSub
Real.pi
β€”arg_of_im_pos
arg_of_im_neg
Left.neg_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_neg
neg_div
Real.arccos_neg
neg_sub
arg_neg_iff πŸ“–mathematicalβ€”Real
Real.instLT
arg
Real.instZero
im
β€”lt_iff_lt_of_le_iff_le
arg_nonneg_iff
arg_neg_one πŸ“–mathematicalβ€”arg
Complex
instNeg
instOne
Real.pi
β€”IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
not_le
zero_lt_one'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
neg_zero
neg_neg
norm_neg
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
div_one
Real.arcsin_zero
zero_add
arg_nonneg_iff πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
arg
im
β€”eq_or_ne
arg_zero
Real.sin_nonneg_of_mem_Icc
arg_le_pi
Mathlib.Tactic.Contrapose.contrapose₁
Real.sin_neg_of_neg_of_neg_pi_lt
neg_pi_lt_arg
sin_arg
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
MulZeroClass.zero_mul
arg_ofReal_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
arg
ofReal
Real.pi
β€”arg_eq_pi_iff
arg_ofReal_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
arg
ofReal
β€”norm_real
zero_div
Real.arcsin_zero
arg_of_im_neg πŸ“–mathematicalReal
Real.instLT
im
Real.instZero
arg
Real.instNeg
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
Complex
instNorm
β€”LT.lt.ne
cos_arg
Real.cos_neg
Real.arccos_cos
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
arg_neg_iff
neg_le
covariant_swap_add_of_covariant_add
neg_pi_lt_arg
neg_neg
arg_of_im_nonneg_of_ne_zero πŸ“–mathematicalReal
Real.instLE
Real.instZero
im
arg
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
Complex
instNorm
β€”cos_arg
Real.arccos_cos
arg_nonneg_iff
arg_le_pi
arg_of_im_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
im
arg
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
Complex
instNorm
β€”arg_of_im_nonneg_of_ne_zero
LT.lt.le
LT.lt.ne'
arg_of_re_neg_of_im_neg πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
arg
Real.instSub
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
instNeg
Norm.norm
instNorm
Real.pi
β€”LT.lt.not_ge
arg_of_re_neg_of_im_nonneg πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
Real.instLE
im
arg
Real.instAdd
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
instNeg
Norm.norm
instNorm
Real.pi
β€”LT.lt.not_ge
arg_of_re_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
re
arg
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
Norm.norm
Complex
instNorm
β€”β€”
arg_one πŸ“–mathematicalβ€”arg
Complex
instOne
Real
Real.instZero
β€”Real.instZeroLEOneClass
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
div_one
Real.arcsin_zero
arg_pow_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Real.Angle
AddMonoid.toNatSMul
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”eq_or_ne
pow_zero
arg_one
arg_zero
nsmul_zero
zero_pow
zero_nsmul
pow_succ
arg_mul_coe_angle
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
succ_nsmul
arg_real_mul πŸ“–mathematicalReal
Real.instLT
Real.instZero
arg
Complex
instMul
ofReal
β€”eq_or_ne
MulZeroClass.mul_zero
norm_mul_cos_add_sin_mul_I
mul_assoc
ofReal_mul
arg_mul_cos_add_sin_mul_I
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
arg_mem_Ioc
arg_zero πŸ“–mathematicalβ€”arg
Complex
instZero
Real
Real.instZero
β€”norm_zero
div_zero
Real.arcsin_zero
arg_zpow_coe_angle πŸ“–mathematicalβ€”Real.Angle.coe
arg
Complex
DivInvMonoid.toZPow
instDivInvMonoid
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”zpow_natCast
arg_pow_coe_angle
natCast_zsmul
zpow_negSucc
arg_inv_coe_angle
negSucc_zsmul
continuousAt_arg πŸ“–mathematicalComplex
Set
Set.instMembership
slitPlane
ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.pseudoMetricSpace
arg
β€”norm_ne_zero_iff
slitPlane_ne_zero
lt_or_lt_iff_ne
mem_slitPlane_iff
ContinuousAt.congr
ContinuousAt.comp
Real.continuousAt_arcsin
ContinuousAt.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.continuousAt
continuous_im
continuous_norm
Filter.EventuallyEq.symm
arg_eq_nhds_of_re_pos
ContinuousAt.neg
IsTopologicalRing.toContinuousNeg
Real.continuous_arccos
continuous_re
arg_eq_nhds_of_im_neg
arg_eq_nhds_of_im_pos
continuousAt_arg_coe_angle πŸ“–mathematicalβ€”ContinuousAt
Complex
Real.Angle
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
Real
Real.Angle.coe
arg
β€”ContinuousAt.comp
Continuous.continuousAt
Real.Angle.continuous_coe
continuousAt_arg
neg_neg
Function.comp_assoc
Function.update_eq_iff
arg_zero
zero_add
arg_neg_coe_angle
Function.mt
mem_slitPlane_iff
ContinuousAt.add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
neg_re
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LE.le.lt_of_ne
ext_iff
continuousAt_const
continuousAt_update_of_ne
T2Space.t1Space
instT2Space
neg_ne_zero
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_arg πŸ“–mathematicalβ€”ContinuousOn
Complex
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.pseudoMetricSpace
arg
slitPlane
β€”ContinuousAt.continuousWithinAt
continuousAt_arg
continuousWithinAt_arg_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
ContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.pseudoMetricSpace
arg
setOf
Real.instLE
β€”Continuous.tendsto
continuous_re
gt_mem_nhds
instOrderTopologyReal
Filter.mp_mem
mem_nhdsWithin_of_mem_nhds
self_mem_nhdsWithin
Filter.univ_mem'
arg.eq_1
LT.lt.not_ge
ContinuousWithinAt.congr_of_eventuallyEq
ContinuousWithinAt.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousAt.comp_continuousWithinAt
Real.continuousAt_arcsin
ContinuousWithinAt.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
Continuous.continuousAt
continuous_im
continuousWithinAt_neg
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.continuousWithinAt
continuous_norm
CanLift.prf
canLift
norm_real
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.ne
tendsto_const_nhds
Eq.ge
cos_arg πŸ“–mathematicalβ€”Real.cos
arg
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
Complex
instNorm
β€”arg.eq_1
Real.cos_arcsin
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
norm_pos_iff
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
sq_norm_sub_sq_im
Real.sqrt_div
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.sqrt_sq
LT.lt.le
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Real.cos_add_pi
mul_neg
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sqrt_sq_eq_abs
abs_of_neg
not_le
neg_div
neg_neg
Real.cos_sub_pi
exp_mem_slitPlane πŸ“–mathematicalβ€”Complex
Set
Set.instMembership
slitPlane
exp
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
arg_exp
ext_norm_arg πŸ“–β€”Norm.norm
Complex
instNorm
arg
β€”β€”norm_mul_exp_arg_mul_I
ext_norm_arg_iff πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
arg
β€”ext_norm_arg
image_exp_Ioc_eq_sphere πŸ“–mathematicalβ€”Set.image
Real
Complex
exp
instMul
ofReal
I
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Real.instOne
β€”Set.ext
sub_zero
norm_eq_one_iff'
mem_slitPlane_iff_arg πŸ“–mathematicalβ€”Complex
Set
Set.instMembership
slitPlane
β€”β€”
natCast_arg πŸ“–mathematicalβ€”arg
Complex
instNatCast
Real
Real.instZero
β€”arg_ofReal_of_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
ofReal_natCast
neg_pi_div_two_le_arg_iff πŸ“–mathematicalβ€”Real
Real.instLE
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
arg
Real.instZero
re
im
β€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
arg_of_re_nonneg
LT.lt.not_ge
arg_of_re_neg_of_im_nonneg
LE.le.trans
Real.neg_pi_div_two_le_arcsin
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
Real.pi_pos
not_le
arg_of_re_neg_of_im_neg
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
sub_eq_add_neg
sub_half
CharZero.NeZero.two
RCLike.charZero_rclike
Real.arcsin_lt_pi_div_two
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
LT.lt.ne
neg_im
abs_of_neg
abs_im_lt_norm
neg_pi_div_two_lt_arg_iff πŸ“–mathematicalβ€”Real
Real.instLT
Real.instNeg
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
arg
Real.instZero
re
Real.instLE
im
β€”Nat.instAtLeastTwoHAddOfNat
lt_iff_le_and_ne
neg_pi_div_two_le_arg_iff
arg_eq_neg_pi_div_two_iff
lt_trichotomy
LT.lt.not_ge
LT.lt.ne
LT.lt.not_gt
LT.lt.le
LT.lt.ne'
neg_pi_lt_arg πŸ“–mathematicalβ€”Real
Real.instLT
Real.instNeg
Real.pi
arg
β€”arg_mem_Ioc
norm_eq_one_iff πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
Real
Real.instOne
exp
instMul
ofReal
I
β€”ofReal_one
one_mul
norm_mul_exp_arg_mul_I
norm_exp_ofReal_mul_I
norm_eq_one_iff' πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
Real
Real.instOne
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
exp
instMul
ofReal
I
β€”norm_eq_one_iff
Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.pi_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
toIocMod_mem_Ioc
eq_sub_of_add_eq
toIocMod_add_toIocDiv_zsmul
ofReal_sub
ofReal_zsmul
ofReal_mul
ofReal_ofNat
Function.Periodic.sub_zsmul_eq
exp_mul_I_periodic
norm_mul_cos_add_sin_mul_I πŸ“–mathematicalβ€”Complex
instMul
ofReal
Norm.norm
instNorm
instAdd
cos
arg
sin
I
β€”exp_mul_I
norm_mul_exp_arg_mul_I
norm_mul_cos_arg πŸ“–mathematicalβ€”Real
Real.instMul
Norm.norm
Complex
instNorm
Real.cos
arg
re
β€”MulZeroClass.mul_zero
sin_ofReal_im
mul_one
sub_self
add_zero
cos_ofReal_im
zero_add
MulZeroClass.zero_mul
sub_zero
norm_mul_cos_add_sin_mul_I
norm_mul_exp_arg_mul_I πŸ“–mathematicalβ€”Complex
instMul
ofReal
Norm.norm
instNorm
exp
arg
I
β€”eq_or_ne
norm_zero
MulZeroClass.zero_mul
norm_ne_zero_iff
ext
exp_ofReal_mul_I_re
cos_arg
mul_comm
IsUnit.div_mul_cancel
exp_ofReal_mul_I_im
sin_arg
sub_zero
add_zero
norm_mul_sin_arg πŸ“–mathematicalβ€”Real
Real.instMul
Norm.norm
Complex
instNorm
Real.sin
arg
im
β€”cos_ofReal_im
mul_one
sin_ofReal_im
MulZeroClass.mul_zero
add_zero
zero_add
sub_self
MulZeroClass.zero_mul
norm_mul_cos_add_sin_mul_I
ofNat_arg πŸ“–mathematicalβ€”arg
Real
Real.instZero
β€”natCast_arg
range_arg πŸ“–mathematicalβ€”Set.range
Real
Complex
arg
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.range_subset_iff
arg_mem_Ioc
arg_cos_add_sin_mul_I
range_exp_mul_I πŸ“–mathematicalβ€”Set.range
Complex
Real
exp
instMul
ofReal
I
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Real.instOne
β€”Set.ext
sin_arg πŸ“–mathematicalβ€”Real.sin
arg
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
Norm.norm
Complex
instNorm
β€”Real.sin_arcsin
abs_le
Real.instIsOrderedAddMonoid
abs_im_div_norm_le_one
neg_div
Real.arcsin_neg
Real.sin_add
Real.sin_neg
Real.cos_pi
mul_neg
mul_one
neg_neg
Real.cos_neg
Real.sin_pi
MulZeroClass.mul_zero
add_zero
sub_eq_add_neg
neg_zero
slitPlane_arg_ne_pi πŸ“–β€”Complex
Set
Set.instMembership
slitPlane
β€”β€”mem_slitPlane_iff_arg
tan_arg πŸ“–mathematicalβ€”Real.tan
arg
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
re
β€”arg_zero
Real.tan_zero
zero_div
Real.tan_eq_sin_div_cos
sin_arg
cos_arg
div_div_div_cancel_rightβ‚€
norm_ne_zero_iff
tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.Tendsto
Complex
arg
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
nhds
Real.pseudoMetricSpace
Real.instNeg
Real.pi
β€”neg_zero
zero_div
Real.arcsin_zero
zero_sub
Filter.Tendsto.sub_const
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
ContinuousAt.comp_continuousWithinAt
Real.continuousAt_arcsin
ContinuousWithinAt.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.continuousAt
continuous_im
continuousWithinAt_neg
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.continuousWithinAt
continuous_norm
CanLift.prf
canLift
norm_real
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.ne
Filter.Tendsto.congr'
Continuous.tendsto
continuous_re
gt_mem_nhds
instOrderTopologyReal
Filter.mp_mem
mem_nhdsWithin_of_mem_nhds
self_mem_nhdsWithin
Filter.univ_mem'
arg.eq_1
LT.lt.not_ge
tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.Tendsto
Complex
arg
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
Real.instLE
nhds
Real.pseudoMetricSpace
Real.pi
β€”arg_eq_pi_iff
ContinuousWithinAt.tendsto
continuousWithinAt_arg_of_re_neg_of_im_zero
toIocMod_arg πŸ“–mathematicalβ€”toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
arg
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
two_mul
toIocMod.congr_simp
neg_add_cancel_left
arg_mem_Ioc

Mathlib.Meta.FunProp.Mor

Definitions

NameCategoryTheorems
Arg πŸ“–CompDataβ€”

---

← Back to Index