Documentation Verification Report

CircleMap

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Complex/CircleMap.lean

Statistics

MetricCount
DefinitionscircleMap
1
Theoremspreimage_circleMap, circleMap_eq_center_iff, circleMap_eq_circleMap_iff, circleMap_mem_closedBall, circleMap_mem_sphere, circleMap_mem_sphere', circleMap_ne_center, circleMap_ne_mem_ball, circleMap_neg_pi_div_two, circleMap_notMem_ball, circleMap_pi_div_two, circleMap_sub_center, circleMap_zero, circleMap_zero_div, circleMap_zero_inv, circleMap_zero_mul, circleMap_zero_pow, circleMap_zero_radius, circleMap_zero_zpow, eq_of_circleMap_eq, injOn_circleMap_of_abs_sub_le, injOn_circleMap_of_abs_sub_le', norm_circleMap_zero, periodic_circleMap
24
Total25

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_circleMap πŸ“–mathematicalβ€”Set.Countable
Real
Set.preimage
Complex
circleMap
β€”preimage
preimage_cexp
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.ofReal_ne_zero
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
Complex.I_ne_zero
Complex.ofReal_injective

(root)

Definitions

NameCategoryTheorems
circleMap πŸ“–CompOp
47 mathmath: Polynomial.mahlerMeasure_def_of_ne_zero, Complex.circleTransformDeriv_eq, range_circleMap, circleIntegral_def_Icc, circleIntegrable_iff, circleMap_neg_pi_div_two, analyticOnNhd_circleMap, circleMap_zero_inv, circleMap_sub_center, image_circleMap_Ioc, circleMap_eq_circleMap_iff, norm_circleMap_zero, contDiff_circleMap, measurable_circleMap, injOn_circleMap_of_abs_sub_le', circleMap_pi_div_two, norm_cauchyPowerSeries_le, Polynomial.intervalIntegrable_mahlerMeasure, lipschitzWith_circleMap, circleMap_notMem_ball, continuous_circleMap, Real.circleAverage_def, Real.circleAverage_eq_integral_add, periodic_circleMap, circleMap_mem_sphere, circleMap_preimage_codiscrete, circleMap_mem_closedBall, hasDerivAt_circleMap, circleMap_neg_radius, circleMap_zero, deriv_circleMap, circleMap_zero_mul, Complex.continuousOn_prod_circle_transform_function, circleMap_zero_div, injOn_circleMap_of_abs_sub_le, circleMap_eq_center_iff, Set.Countable.preimage_circleMap, Real.circleAverage_eq_intervalAverage, circleIntegrable_def, circleMap_zero_radius, circleMap_zero_pow, CircleIntegrable.out, deriv_circleMap_eq_zero_iff, circleMap_mem_sphere', continuous_circleMap_inv, differentiable_circleMap, circleMap_zero_zpow

Theorems

NameKindAssumesProvesValidatesDepends On
circleMap_eq_center_iff πŸ“–mathematicalβ€”circleMap
Real
Real.instZero
β€”AddLeftCancelSemigroup.toIsLeftCancelAdd
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
circleMap_eq_circleMap_iff πŸ“–mathematicalβ€”circleMap
Complex
Complex.instMul
Complex.ofReal
Complex.I
Complex.instAdd
Complex.instIntCast
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”AddLeftCancelSemigroup.toIsLeftCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Complex.norm_exp_ofReal_mul_I
Complex.norm_real
norm_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Complex.arg_zero
Nat.instAtLeastTwoHAddOfNat
div_self
NeZero.charZero_one
Complex.instCharZero
one_mul
circleMap_mem_closedBall πŸ“–mathematicalReal
Real.instLE
Real.instZero
Complex
Set
Set.instMembership
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
circleMap
β€”Metric.sphere_subset_closedBall
circleMap_mem_sphere
circleMap_mem_sphere πŸ“–mathematicalReal
Real.instLE
Real.instZero
Complex
Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
circleMap
β€”abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
circleMap_mem_sphere'
circleMap_mem_sphere' πŸ“–mathematicalβ€”Complex
Set
Set.instMembership
Metric.sphere
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
abs
Real
Real.lattice
Real.instAddGroup
circleMap
β€”circleMap_sub_center
norm_circleMap_zero
circleMap_ne_center πŸ“–β€”β€”β€”β€”circleMap_eq_center_iff
circleMap_ne_mem_ball πŸ“–β€”Complex
Set
Set.instMembership
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
β€”β€”circleMap_notMem_ball
circleMap_neg_pi_div_two πŸ“–mathematicalβ€”circleMap
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
Complex.instSub
Complex.instMul
Complex.ofReal
Complex.I
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_div
Complex.ofReal_neg
Complex.exp_neg_pi_div_two_mul_I
mul_neg
sub_eq_add_neg
circleMap_notMem_ball πŸ“–mathematicalβ€”Complex
Set
Set.instMembership
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
circleMap
β€”circleMap_sub_center
norm_circleMap_zero
circleMap_pi_div_two πŸ“–mathematicalβ€”circleMap
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
Complex.instAdd
Complex.instMul
Complex.ofReal
Complex.I
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_div
Complex.exp_pi_div_two_mul_I
circleMap_sub_center πŸ“–mathematicalβ€”Complex
Complex.instSub
circleMap
Complex.instZero
β€”add_sub_cancel_left
zero_add
circleMap_zero πŸ“–mathematicalβ€”circleMap
Complex
Complex.instZero
Complex.instMul
Complex.ofReal
Complex.exp
Complex.I
β€”zero_add
circleMap_zero_div πŸ“–mathematicalβ€”Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
circleMap
Complex.instZero
Real
Real.instDivInvMonoid
Real.instSub
β€”circleMap_zero
Complex.ofReal_div
Complex.ofReal_sub
sub_mul
Complex.exp_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
circleMap_zero_inv πŸ“–mathematicalβ€”Complex
Complex.instInv
circleMap
Complex.instZero
Real
Real.instInv
Real.instNeg
β€”circleMap_zero
mul_comm
mul_inv_rev
Complex.ofReal_inv
Complex.ofReal_neg
mul_neg
Complex.exp_neg
circleMap_zero_mul πŸ“–mathematicalβ€”Complex
Complex.instMul
circleMap
Complex.instZero
Real
Real.instMul
Real.instAdd
β€”circleMap_zero
Complex.ofReal_mul
Complex.ofReal_add
add_mul
Distrib.rightDistribClass
Complex.exp_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
circleMap_zero_pow πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
circleMap
Complex.instZero
Real
Real.instMonoid
Real.instMul
Real.instNatCast
β€”circleMap_zero
mul_pow
Complex.ofReal_pow
Complex.ofReal_mul
circleMap_zero_radius πŸ“–mathematicalβ€”circleMap
Real
Real.instZero
Complex
β€”circleMap_eq_center_iff
circleMap_zero_zpow πŸ“–mathematicalβ€”Complex
DivInvMonoid.toZPow
Complex.instDivInvMonoid
circleMap
Complex.instZero
Real
Real.instDivInvMonoid
Real.instMul
Real.instIntCast
β€”circleMap_zero
mul_zpow
Complex.ofReal_zpow
Complex.ofReal_mul
eq_of_circleMap_eq πŸ“–β€”Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
circleMap
β€”β€”Nat.instAtLeastTwoHAddOfNat
circleMap_eq_circleMap_iff
Int.cast_ofNat
Int.cast_mul
Complex.ofReal_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Distrib.rightDistribClass
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Int.abs_lt_one_iff
Nat.cast_one
Real.instIsStrictOrderedRing
Int.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsStrictOrderedRing.toMulPosStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Real.pi_pos
mul_assoc
add_sub_cancel_left
abs_mul
Nat.abs_ofNat
abs_of_pos
MulZeroClass.zero_mul
Int.cast_zero
add_zero
injOn_circleMap_of_abs_sub_le πŸ“–mathematicalReal
Real.instLE
abs
Real.lattice
Real.instAddGroup
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Set.InjOn
Complex
circleMap
Set.uIoc
Real.linearOrder
β€”Nat.instAtLeastTwoHAddOfNat
eq_of_circleMap_eq
abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
sub_eq_zero_of_eq
max_sub_min_eq_abs'
Mathlib.Tactic.Linarith.add_nonpos
injOn_circleMap_of_abs_sub_le' πŸ“–mathematicalReal
Real.instLE
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Set.InjOn
Complex
circleMap
Set.Ico
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
eq_of_circleMap_eq
abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.add_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
norm_circleMap_zero πŸ“–mathematicalβ€”Norm.norm
Complex
Complex.instNorm
circleMap
Complex.instZero
abs
Real
Real.lattice
Real.instAddGroup
β€”zero_add
Complex.norm_mul
Complex.norm_real
Complex.norm_exp_ofReal_mul_I
mul_one
periodic_circleMap πŸ“–mathematicalβ€”Function.Periodic
Real
Complex
Real.instAdd
circleMap
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_add
Complex.ofReal_mul
add_mul
Distrib.rightDistribClass
Complex.exp_periodic

---

← Back to Index