Documentation Verification Report

Log

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Complex/Log.lean

Statistics

MetricCount
DefinitionsexpOpenPartialHomeomorph, expPartialHomeomorph
2
TheoremscontinuousWithinAt_log_of_re_neg_of_im_zero, countable_preimage_exp, exp_eq_exp_iff_exists_int, exp_eq_exp_iff_exp_sub_eq_one, exp_eq_one_iff, exp_inj_of_neg_pi_lt_of_le_pi, exp_log, log_I, log_conj, log_conj_eq_ite, log_div_self, log_exp, log_exp_eq_re_add_toIocMod, log_exp_eq_sub_toIocDiv, log_exp_exists, log_im, log_im_le_pi, log_inv, log_inv_eq_ite, log_mul, log_mul_eq_add_log_iff, log_mul_ofReal, log_neg_I, log_neg_one, log_ofReal_mul, log_ofReal_re, log_one, log_re, log_zero, map_exp_comap_re_atBot, map_exp_comap_re_atTop, natCast_log, neg_pi_lt_log_im, ofNat_log, ofReal_log, range_exp, tendsto_log_nhdsWithin_im_neg_of_re_neg_of_im_zero, tendsto_log_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, two_pi_I_ne_zero, clog, clog, clog, clog, clog, preimage_cexp, continuousAt_clog
46
Total48

Complex

Definitions

NameCategoryTheorems
expOpenPartialHomeomorph πŸ“–CompOpβ€”
expPartialHomeomorph πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuousWithinAt_log_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
ContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
log
setOf
Real.instLE
β€”Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousWithinAt.tendsto
ContinuousAt.comp_continuousWithinAt
Continuous.continuousAt
continuous_ofReal
ContinuousWithinAt.log
Continuous.continuousWithinAt
continuous_norm
CanLift.prf
canLift
norm_real
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.ne
ContinuousWithinAt.mul
IsTopologicalSemiring.toContinuousMul
continuousWithinAt_arg_of_re_neg_of_im_zero
tendsto_const_nhds
countable_preimage_exp πŸ“–mathematicalβ€”Set.Countable
Complex
Set.preimage
exp
β€”Set.Countable.mono
Set.image_preimage_eq_inter_range
range_exp
Set.diff_eq
Set.union_singleton
Set.diff_union_self
Set.subset_union_left
Set.Countable.insert
Set.Countable.image
Set.biUnion_preimage_singleton
Set.Countable.biUnion
Nat.instAtLeastTwoHAddOfNat
Set.setOf_exists
Set.countable_iUnion
instCountableInt
Set.countable_singleton
exp_eq_exp_iff_exists_int πŸ“–mathematicalβ€”exp
Complex
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
β€”Nat.instAtLeastTwoHAddOfNat
exp_eq_exp_iff_exp_sub_eq_one πŸ“–mathematicalβ€”exp
Complex
instSub
instOne
β€”exp_sub
div_eq_one_iff_eq
exp_ne_zero
exp_eq_one_iff πŸ“–mathematicalβ€”exp
Complex
instOne
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
β€”Nat.instAtLeastTwoHAddOfNat
existsUnique_add_zsmul_mem_Ioc
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.two_pi_pos
Int.cast_neg
neg_mul
eq_neg_iff_add_eq_zero
two_mul
mul_one
add_zero
MulZeroClass.mul_zero
mul_add
Distrib.leftDistribClass
sub_self
neg_add_cancel_left
smul_add
zsmul_eq_mul
log_exp
Function.Periodic.int_mul
exp_periodic
log_one
Function.Periodic.eq
exp_zero
exp_inj_of_neg_pi_lt_of_le_pi πŸ“–β€”Real
Real.instLT
Real.instNeg
Real.pi
im
Real.instLE
exp
β€”β€”log_exp
exp_log πŸ“–mathematicalβ€”exp
log
β€”log.eq_1
exp_add_mul_I
ofReal_sin
sin_arg
ofReal_cos
cos_arg
ofReal_exp
Real.exp_log
norm_pos_iff
mul_add
Distrib.leftDistribClass
ofReal_div
mul_div_cancelβ‚€
ofReal_ne_zero
norm_ne_zero_iff
mul_assoc
re_add_im
log_I πŸ“–mathematicalβ€”log
I
Complex
instMul
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_I
Real.log_one
arg_I
ofReal_div
zero_add
log_conj πŸ“–mathematicalβ€”log
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”log_conj_eq_ite
log_conj_eq_ite πŸ“–mathematicalβ€”log
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Real
arg
Real.pi
Real.decidableEq
β€”norm_conj
arg_conj
map_add
SemilinearMapClass.toAddHomClass
instCharZero
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
conj_ofReal
ofReal_neg
conj_I
mul_neg
neg_mul
log_div_self πŸ“–mathematicalβ€”log
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instZero
β€”norm_div
Real.log_div_self
arg_div_self
MulZeroClass.zero_mul
add_zero
log_exp πŸ“–mathematicalReal
Real.instLT
Real.instNeg
Real.pi
im
Real.instLE
log
exp
β€”log.eq_1
norm_exp
Real.log_exp
exp_eq_exp_re_mul_sin_add_cos
ofReal_exp
arg_mul_cos_add_sin_mul_I
Real.exp_pos
re_add_im
log_exp_eq_re_add_toIocMod πŸ“–mathematicalβ€”log
exp
Complex
instAdd
ofReal
re
instMul
toIocMod
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
im
I
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
log.eq_1
norm_exp
Real.log_exp
arg_exp
log_exp_eq_sub_toIocDiv πŸ“–mathematicalβ€”log
exp
Complex
instSub
instMul
instIntCast
toIocDiv
Real
Real.instAddCommGroup
Real.linearOrder
Real.instIsOrderedAddMonoid
Real.instArchimedean
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.two_pi_pos
Real.instNeg
im
instNatCast
ofReal
I
β€”Real.instIsOrderedAddMonoid
Real.instArchimedean
Nat.instAtLeastTwoHAddOfNat
Real.two_pi_pos
log_exp_eq_re_add_toIocMod
toIocMod.eq_1
ofReal_sub
sub_mul
add_sub_assoc
re_add_im
zsmul_eq_mul
ofReal_mul
mul_assoc
log_exp_exists πŸ“–mathematicalβ€”log
exp
Complex
instAdd
instMul
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
β€”Nat.instAtLeastTwoHAddOfNat
exp_eq_exp_iff_exists_int
exp_log
exp_ne_zero
log_im πŸ“–mathematicalβ€”im
log
arg
β€”mul_one
MulZeroClass.mul_zero
add_zero
zero_add
log_im_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
im
log
Real.pi
β€”log_im
log_inv πŸ“–mathematicalβ€”log
Complex
instInv
instNeg
β€”log_inv_eq_ite
log_inv_eq_ite πŸ“–mathematicalβ€”log
Complex
instInv
Real
arg
Real.pi
Real.decidableEq
instNeg
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”inv_zero
log_zero
arg_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
neg_zero
inv_def
log_mul_ofReal
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
normSq_pos
map_ne_zero
instNontrivial
Real.log_inv
ofReal_neg
sub_eq_neg_add
log_conj_eq_ite
map_add
SemilinearMapClass.toAddHomClass
instCharZero
RingHomClass.toLinearMapClassNNRat
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
conj_ofReal
conj_I
normSq_eq_norm_sq
Real.log_pow
Nat.instAtLeastTwoHAddOfNat
ofReal_mul
neg_add
mul_neg
neg_neg
log_mul πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Real.instAdd
arg
log
Complex
instMul
instAdd
β€”log_mul_eq_add_log_iff
log_mul_eq_add_log_iff πŸ“–mathematicalβ€”log
Complex
instMul
instAdd
Real
Set
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNeg
Real.pi
Real.instAdd
arg
β€”ext_iff
log_re
log_im
norm_mul
NormedDivisionRing.toNormMulClass
Real.log_mul
norm_ne_zero_iff
arg_mul_eq_add_arg_iff
log_mul_ofReal πŸ“–mathematicalReal
Real.instLT
Real.instZero
log
Complex
instMul
ofReal
instAdd
Real.log
β€”mul_comm
log_ofReal_mul
log_neg_I πŸ“–mathematicalβ€”log
Complex
instNeg
I
instMul
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_neg
norm_I
Real.log_one
arg_neg_I
ofReal_neg
ofReal_div
neg_mul
zero_add
log_neg_one πŸ“–mathematicalβ€”log
Complex
instNeg
instOne
instMul
ofReal
Real.pi
I
β€”norm_neg
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Real.log_one
arg_neg_one
zero_add
log_ofReal_mul πŸ“–mathematicalReal
Real.instLT
Real.instZero
log
Complex
instMul
ofReal
instAdd
Real.log
β€”norm_ne_zero_iff
norm_mul
NormedDivisionRing.toNormMulClass
norm_real
arg_real_mul
Real.norm_of_nonneg
LT.lt.le
Real.log_mul
LT.lt.ne'
ofReal_add
add_assoc
log_ofReal_re πŸ“–mathematicalβ€”re
log
ofReal
Real.log
β€”log_re
norm_real
Real.log_abs
log_one πŸ“–mathematicalβ€”log
Complex
instOne
instZero
β€”CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
Real.log_one
arg_one
MulZeroClass.zero_mul
add_zero
log_re πŸ“–mathematicalβ€”re
log
Real.log
Norm.norm
Complex
instNorm
β€”MulZeroClass.mul_zero
mul_one
sub_self
add_zero
log_zero πŸ“–mathematicalβ€”log
Complex
instZero
β€”norm_zero
Real.log_zero
arg_zero
MulZeroClass.zero_mul
add_zero
map_exp_comap_re_atBot πŸ“–mathematicalβ€”Filter.map
Complex
exp
Filter.comap
Real
re
Filter.atBot
Real.instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”comap_exp_nhds_zero
Filter.map_comap
range_exp
nhdsWithin.eq_1
map_exp_comap_re_atTop πŸ“–mathematicalβ€”Filter.map
Complex
exp
Filter.comap
Real
re
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
β€”comap_exp_cobounded
Filter.map_comap
range_exp
inf_eq_left
Filter.le_principal_iff
Bornology.eventually_ne_cobounded
natCast_log πŸ“–mathematicalβ€”ofReal
Real.log
Real
Real.instNatCast
log
Complex
instNatCast
β€”ofReal_log
Nat.cast_nonneg
Real.instIsOrderedRing
ofReal_natCast
neg_pi_lt_log_im πŸ“–mathematicalβ€”Real
Real.instLT
Real.instNeg
Real.pi
im
log
β€”log_im
ofNat_log πŸ“–mathematicalβ€”ofReal
Real.log
log
Complex
instOfNatAtLeastTwo
instNatCast
β€”natCast_log
ofReal_log πŸ“–mathematicalReal
Real.instLE
Real.instZero
ofReal
Real.log
log
β€”ext
log_re
ofReal_re
norm_of_nonneg
ofReal_im
log_im
arg_ofReal_of_nonneg
range_exp πŸ“–mathematicalβ€”Set.range
Complex
exp
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
instZero
β€”Set.ext
exp_ne_zero
exp_log
tendsto_log_nhdsWithin_im_neg_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.Tendsto
Complex
log
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
nhds
instSub
ofReal
Real.log
Norm.norm
instNorm
instMul
Real.pi
I
β€”sub_eq_add_neg
ofReal_neg
neg_mul
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousWithinAt.tendsto
ContinuousAt.comp_continuousWithinAt
Continuous.continuousAt
continuous_ofReal
ContinuousWithinAt.log
Continuous.continuousWithinAt
continuous_norm
CanLift.prf
canLift
norm_real
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.ne
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
Filter.Tendsto.comp
Continuous.tendsto
tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
tendsto_const_nhds
tendsto_log_nhdsWithin_im_nonneg_of_re_neg_of_im_zero πŸ“–mathematicalReal
Real.instLT
re
Real.instZero
im
Filter.Tendsto
Complex
log
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
Real.instLE
nhds
instAdd
ofReal
Real.log
Norm.norm
instNorm
instMul
Real.pi
I
β€”arg_eq_pi_iff
ContinuousWithinAt.tendsto
continuousWithinAt_log_of_re_neg_of_im_zero
two_pi_I_ne_zero πŸ“–β€”β€”β€”β€”Nat.instAtLeastTwoHAddOfNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
instCharZero

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
clog πŸ“–mathematicalContinuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.logβ€”continuous_iff_continuousAt
ContinuousAt.clog
continuousAt

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
clog πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.logβ€”Filter.Tendsto.clog

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
clog πŸ“–mathematicalContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.logβ€”ContinuousWithinAt.clog

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
clog πŸ“–mathematicalContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.logβ€”Filter.Tendsto.clog

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
clog πŸ“–mathematicalFilter.Tendsto
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set
Set.instMembership
Complex.slitPlane
Complex.logβ€”comp
ContinuousAt.tendsto
continuousAt_clog

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_cexp πŸ“–mathematicalβ€”Set.Countable
Complex
Set.preimage
Complex.exp
β€”Complex.countable_preimage_exp

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_clog πŸ“–mathematicalComplex
Set
Set.instMembership
Complex.slitPlane
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.log
β€”ContinuousAt.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
ContinuousAt.comp
Continuous.continuousAt
Complex.continuous_ofReal
Real.continuousAt_log
norm_ne_zero_iff
Complex.slitPlane_ne_zero
continuous_norm
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
Complex.continuousAt_arg

---

← Back to Index