Documentation Verification Report

IntegralRepresentation

📁 Source: Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/Rpow/IntegralRepresentation.lean

Statistics

MetricCount
DefinitionsrpowIntegrand₀₁
1
Theoremscfcₙ_rpowIntegrand₀₁_eq_cfcₙ_rpowIntegrand₀₁_one, exists_measure_nnrpow_eq_integral_cfcₙ_rpowIntegrand₀₁, monotoneOn_cfcₙ_rpowIntegrand₀₁, aestronglyMeasurable_rpowIntegrand₀₁, continuousOn_rpowIntegrand₀₁, continuousOn_rpowIntegrand₀₁_Ici, continuousOn_rpowIntegrand₀₁_uncurry, exists_measure_rpow_eq_integral, integrableOn_rpowIntegrand₀₁_Ici, integrableOn_rpowIntegrand₀₁_Ioi, integral_rpowIntegrand₀₁_eq_rpow_mul_const, integral_rpowIntegrand₀₁_one_pos, le_integral_rpowIntegrand₀₁_one, rpowIntegrand₀₁_apply_mul, rpowIntegrand₀₁_apply_mul', rpowIntegrand₀₁_apply_mul_eqOn_Ici, rpowIntegrand₀₁_eqOn_mul_rpowIntegrand₀₁_one, rpowIntegrand₀₁_eqOn_pow_div, rpowIntegrand₀₁_eq_pow_div, rpowIntegrand₀₁_le_rpow_sub_one, rpowIntegrand₀₁_le_rpow_sub_two_mul_self, rpowIntegrand₀₁_monotoneOn, rpowIntegrand₀₁_nonneg, rpowIntegrand₀₁_one_ge_rpow_sub_two, rpowIntegrand₀₁_zero_left, rpowIntegrand₀₁_zero_right, rpow_eq_const_mul_integral
27
Total28

CFC

Theorems

NameKindAssumesProvesValidatesDepends On
cfcₙ_rpowIntegrand₀₁_eq_cfcₙ_rpowIntegrand₀₁_one 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
Real.instLT
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
cfcₙ
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Real.instCommSemiring
Real.instNontrivial
instStarRingReal
Real.metricSpace
IsTopologicalRing.toIsTopologicalSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
instContinuousStarReal
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
Real.rpowIntegrand₀₁
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
Real.instPow
Real.instSub
Real.instInv
—Real.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
cfcₙ_congr
Set.EqOn.mono
Real.rpowIntegrand₀₁_eqOn_mul_rpowIntegrand₀₁_one
cfcₙ_smul
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsScalarTower.left
Pi.isScalarTower
IsScalarTower.right
ContinuousOn.mono
Real.continuousOn_rpowIntegrand₀₁_Ici
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
ContinuousOn.comp'
ContinuousOn.const_smul
continuousOn_id'
MulZeroClass.mul_zero
Real.rpowIntegrand₀₁_zero_right
cfcₙ_comp_smul
RCLike.uniqueNonUnitalContinuousFunctionalCalculus
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.MapsTo.image_subset
Set.MapsTo.mono_left
IsSelfAdjoint.of_nonneg
exists_measure_nnrpow_eq_integral_cfcₙ_rpowIntegrand₀₁ 📖mathematicalNNReal
Set
Set.instMembership
Set.Ioo
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
instOneNNReal
MeasureTheory.IntegrableOn
Real
Real.measurableSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
cfcₙ
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
StarRing.toStarAddMonoid
Real.instCommSemiring
Real.instNontrivial
instStarRingReal
Real.metricSpace
IsTopologicalRing.toIsTopologicalSemiring
MetricSpace.toPseudoMetricSpace
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
instContinuousStarReal
NormedSpace.toModule
Real.normedField
Real.rpowIntegrand₀₁
NNReal.toReal
Set.Ioi
Real.instPreorder
Real.instZero
instPowNNReal
MeasureTheory.integral
NonUnitalNormedRing.toNormedAddCommGroup
MeasureTheory.Measure.restrict
—Real.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal
Real.exists_measure_rpow_eq_integral
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nat.cast_zero
le_csSup_of_le
IsCompact.bddAbove
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Real.continuousOn_rpowIntegrand₀₁_uncurry
MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
MeasureTheory.ae_restrict_mem
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
Filter.univ_mem'
Real.norm_of_nonneg
Real.rpowIntegrand₀₁_nonneg
le_of_lt
Real.rpowIntegrand₀₁_monotoneOn
le_csSup
quasispectrum.isCompact
instProperSpaceReal
MeasureTheory.hasFiniteIntegral_norm_iff
Real.rpowIntegrand₀₁_zero_right
integrableOn_cfcₙ
secondCountableTopologyEither_of_left
instSecondCountableTopologyReal
IsSelfAdjoint.of_nonneg
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
RCLike.instContinuousStar
nnrpow_eq_cfcₙ_real
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
NonUnitalSeminormedRing.toIsTopologicalRing
cfcₙ_congr
cfcₙ_setIntegral
LE.le.isSelfAdjoint
monotoneOn_cfcₙ_rpowIntegrand₀₁ 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
Real.instLT
MonotoneOn
PartialOrder.toPreorder
cfcₙ
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
StarRing.toStarAddMonoid
NonUnitalCStarAlgebra.toStarRing
Real.instCommSemiring
Real.instNontrivial
instStarRingReal
Real.metricSpace
IsTopologicalRing.toIsTopologicalSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
instContinuousStarReal
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
IsScalarTower.complexToReal
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
Complex
Complex.instNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalCStarAlgebra.toIsScalarTower
SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
Real.rpowIntegrand₀₁
Set.Ici
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
—Real.instNontrivial
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
cfcₙ_rpowIntegrand₀₁_eq_cfcₙ_rpowIntegrand₀₁_one
CStarAlgebra.instNonnegSpectrumClass'
smul_le_smul_of_nonneg_left
IsOrderedModule.toPosSMulMono
instIsOrderedModule
Real.instStarOrderedRing
StarModule.complexToReal
NonUnitalCStarAlgebra.toStarModule
cfcₙ.congr_simp
Real.one_rpow
inv_one
one_mul
monotoneOn_one_sub_one_add_inv_real
Mathlib.Meta.Positivity.smul_nonneg_of_pos_of_nonneg
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
le_of_lt
Real.rpow_pos_of_pos

Real

Definitions

NameCategoryTheorems
rpowIntegrand₀₁ 📖CompOp
27 mathmath: continuousOn_rpowIntegrand₀₁_uncurry, integrableOn_rpowIntegrand₀₁_Ioi, rpowIntegrand₀₁_monotoneOn, rpow_eq_const_mul_integral, rpowIntegrand₀₁_zero_right, aestronglyMeasurable_rpowIntegrand₀₁, rpowIntegrand₀₁_le_rpow_sub_two_mul_self, rpowIntegrand₀₁_apply_mul_eqOn_Ici, integral_rpowIntegrand₀₁_one_pos, rpowIntegrand₀₁_zero_left, rpowIntegrand₀₁_nonneg, rpowIntegrand₀₁_apply_mul, rpowIntegrand₀₁_eq_pow_div, continuousOn_rpowIntegrand₀₁_Ici, le_integral_rpowIntegrand₀₁_one, CFC.exists_measure_nnrpow_eq_integral_cfcₙ_rpowIntegrand₀₁, CFC.cfcₙ_rpowIntegrand₀₁_eq_cfcₙ_rpowIntegrand₀₁_one, rpowIntegrand₀₁_le_rpow_sub_one, continuousOn_rpowIntegrand₀₁, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, integral_rpowIntegrand₀₁_eq_rpow_mul_const, rpowIntegrand₀₁_apply_mul', rpowIntegrand₀₁_one_ge_rpow_sub_two, exists_measure_rpow_eq_integral, rpowIntegrand₀₁_eqOn_mul_rpowIntegrand₀₁_one, integrableOn_rpowIntegrand₀₁_Ici, rpowIntegrand₀₁_eqOn_pow_div

Theorems

NameKindAssumesProvesValidatesDepends On
aestronglyMeasurable_rpowIntegrand₀₁ 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
MeasureTheory.AEStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
measurableSpace
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
rpowIntegrand₀₁
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
—ContinuousOn.aestronglyMeasurable
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
borelSpace
PseudoEMetricSpace.pseudoMetrizableSpace
continuousOn_rpowIntegrand₀₁
measurableSet_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
continuousOn_rpowIntegrand₀₁ 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
rpowIntegrand₀₁
Set.Ioi
—ContinuousOn.congr
ContinuousOn.rpow_const
continuousOn_id'
LT.lt.ne'
ContinuousOn.div₀
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousOn.fun_mul
continuousOn_const
ContinuousOn.fun_add
IsTopologicalSemiring.toContinuousAdd
instLawfulOrderLT_mathlib
instIsPreorder_mathlib
instOrderedAddOfAddRightMonoOfAddRightReflectLE
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instOrderedRingOfIsStrictOrderedRing
instIsStrictOrderedRing
Set.mem_Ioi
rpowIntegrand₀₁_eqOn_pow_div
continuousOn_rpowIntegrand₀₁_Ici 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLT
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
rpowIntegrand₀₁
Set.Ici
—ContinuousOn.uncurry_left
continuousOn_rpowIntegrand₀₁_uncurry
continuousOn_rpowIntegrand₀₁_uncurry 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
Set.instHasSubset
Set.Ici
ContinuousOn
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
rpowIntegrand₀₁
SProd.sprod
Set.instSProd
Set.Ioi
—ContinuousOn.congr
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousOn.rpow_const
ContinuousOn.fst
continuousOn_id'
ContinuousOn.snd
ContinuousOn.inv₀
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRingReal
ContinuousOn.fun_add
IsTopologicalSemiring.toContinuousAdd
rpowIntegrand₀₁_eq_pow_div
le_of_lt
exists_measure_rpow_eq_integral 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
MeasureTheory.IntegrableOn
measurableSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
rpowIntegrand₀₁
Set.Ioi
instPow
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.Measure.restrict
—inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
le_of_lt
integral_rpowIntegrand₀₁_one_pos
IsScalarTower.right
MeasureTheory.Measure.restrict_smul
MeasureTheory.Integrable.smul_measure_nnreal
integrableOn_rpowIntegrand₀₁_Ioi
MeasureTheory.integral_smul_nnreal_measure
rpow_eq_const_mul_integral
integrableOn_rpowIntegrand₀₁_Ici 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
MeasureTheory.IntegrableOn
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
rpowIntegrand₀₁
Set.Ici
MeasureTheory.MeasureSpace.volume
—MeasureTheory.IntegrableOn.congr_set_ae
integrableOn_rpowIntegrand₀₁_Ioi
Filter.EventuallyEq.symm
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Ioi_ae_eq_Ici
noAtoms_volume
integrableOn_rpowIntegrand₀₁_Ioi 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
MeasureTheory.IntegrableOn
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
rpowIntegrand₀₁
Set.Ioi
MeasureTheory.MeasureSpace.volume
—Set.Ioc_union_Ioi_eq_Ioi
zero_le_one
instZeroLEOneClass
MeasureTheory.IntegrableOn.union
PseudoEMetricSpace.pseudoMetrizableSpace
integral_rpowIntegrand₀₁_eq_rpow_mul_const 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
rpowIntegrand₀₁
instMul
instPow
—LE.le.eq_or_lt
add_zero
sub_self
MulZeroClass.mul_zero
MeasureTheory.integral_zero
zero_rpow
LT.lt.ne'
MulZeroClass.zero_mul
Set.EqOn.mono
Set.Ioi_subset_Ici_self
rpowIntegrand₀₁_apply_mul_eqOn_Ici
LT.lt.le
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
smul_eq_mul
integral_smul_const
instCompleteSpace
mul_comm
MeasureTheory.integral_comp_mul_deriv_Ioi
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn_const
continuousOn_id'
Filter.Tendsto.const_mul_atTop
instIsStrictOrderedRing
Filter.tendsto_id
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivWithinAt.congr_simp
mul_one
HasDerivWithinAt.const_mul
hasDerivWithinAt_id
Set.image_mul_left_Ioi
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
continuousOn_rpowIntegrand₀₁
Set.image_mul_left_Ici
integrableOn_rpowIntegrand₀₁_Ici
MeasureTheory.integrableOn_congr_fun
measurableSet_Ici
instClosedIciTopology
MeasureTheory.Integrable.mul_const
zero_le_one
instZeroLEOneClass
integral_rpowIntegrand₀₁_one_pos 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLT
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
rpowIntegrand₀₁
—Nat.instAtLeastTwoHAddOfNat
neg_div
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
one_div_neg
IsOrderedRing.toPosMulMono
instIsOrderedRing
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_integral_rpowIntegrand₀₁_one
le_integral_rpowIntegrand₀₁_one 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
rpowIntegrand₀₁
—Nat.instAtLeastTwoHAddOfNat
div_div
neg_div
one_div
one_rpow
mul_neg
mul_one
MeasureTheory.integral_const_mul
integral_Ioi_rpow_of_lt
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
add_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
MeasureTheory.setIntegral_mono_on
instIsOrderedAddMonoid
instIsOrderedModule
instStarOrderedRing
RCLike.instStarModuleReal
IsScalarTower.right
Algebra.to_smulCommClass
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.Integrable.const_mul
integrableOn_Ioi_rpow_of_lt
zero_le_one
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
rpowIntegrand₀₁_one_ge_rpow_sub_two
le_of_lt
MeasureTheory.setIntegral_mono_set
integrableOn_rpowIntegrand₀₁_Ioi
MeasureTheory.ae_restrict_of_forall_mem
rpowIntegrand₀₁_nonneg
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
Set.Ioi_subset_Ioi
rpowIntegrand₀₁_apply_mul 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
rpowIntegrand₀₁
instMul
instPow
instSub
—mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
rpowIntegrand₀₁_eq_pow_div
zero_le_one
instZeroLEOneClass
MulZeroClass.zero_mul
zero_rpow
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Set.mem_Ioo
neg_eq_zero
sub_eq_zero_of_eq
MulZeroClass.mul_zero
add_zero
div_zero
mul_one
mul_assoc
mul_div_assoc
mul_rpow
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
div_mul_eq_div_mul_one_div
div_self
one_mul
mul_comm
rpowIntegrand₀₁_apply_mul' 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
instMul
rpowIntegrand₀₁
instPow
—rpowIntegrand₀₁_apply_mul
mul_assoc
rpow_one
sub_add_cancel
rpow_add'
rpowIntegrand₀₁_apply_mul_eqOn_Ici 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
Set.EqOn
instMul
rpowIntegrand₀₁
instPow
Set.Ici
—rpowIntegrand₀₁_apply_mul'
rpowIntegrand₀₁_eqOn_mul_rpowIntegrand₀₁_one 📖mathematicalReal
instLT
instZero
Set.EqOn
rpowIntegrand₀₁
instMul
instPow
instSub
instOne
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
instInv
Set.Ici
instPreorder
—IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
one_div
rpow_sub_one
LT.lt.ne'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
one_rpow
inv_one
mul_comm
rpowIntegrand₀₁_eqOn_pow_div 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
Set.EqOn
rpowIntegrand₀₁
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instPow
instSub
instAdd
Set.Ioi
—rpowIntegrand₀₁_eq_pow_div
le_of_lt
rpowIntegrand₀₁_eq_pow_div 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
rpowIntegrand₀₁
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instPow
instSub
instAdd
—Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
neg_eq_zero
sub_eq_zero_of_eq
zero_rpow
LT.lt.ne'
inv_zero
zero_add
zero_sub
mul_neg
MulZeroClass.zero_mul
neg_zero
zero_div
ne_of_gt
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_of_le_of_ne'
inv_eq_one_div
div_sub_div
one_mul
mul_one
add_sub_cancel_left
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
rpow_pos_of_pos
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
rpow_sub_one
rpowIntegrand₀₁_le_rpow_sub_one 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
rpowIntegrand₀₁
instPow
instSub
—add_zero
sub_self
MulZeroClass.mul_zero
rpow_nonneg
rpowIntegrand₀₁_eq_pow_div
div_le_div₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
le_of_lt
lt_of_le_of_ne'
le_refl
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
div_eq_one_iff_eq
mul_one
rpowIntegrand₀₁_le_rpow_sub_two_mul_self 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLT
instLE
rpowIntegrand₀₁
instMul
instPow
instSub
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
—Nat.instAtLeastTwoHAddOfNat
rpowIntegrand₀₁_eq_pow_div
le_of_lt
div_le_div₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
rpow_pos_of_pos
le_refl
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
rpow_sub_one
ne_of_gt
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.instAtLeastTwo
rpowIntegrand₀₁_monotoneOn 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
MonotoneOn
rpowIntegrand₀₁
Set.Ici
—add_zero
sub_self
MulZeroClass.mul_zero
rpowIntegrand₀₁_nonneg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
instIsOrderedRing
sub_le_sub_left
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
inv_anti₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Right.add_pos_of_nonneg_of_pos
lt_of_le_of_ne'
add_le_add_right
rpow_nonneg
rpowIntegrand₀₁_nonneg 📖mathematicalReal
instLT
instZero
instLE
rpowIntegrand₀₁—eq_or_lt_of_le'
zero_rpow
ne_of_gt
inv_zero
zero_add
zero_sub
mul_neg
MulZeroClass.zero_mul
neg_zero
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
le_of_lt
rpow_pos_of_pos
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
inv_anti₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
rpowIntegrand₀₁_one_ge_rpow_sub_two 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instPow
instSub
rpowIntegrand₀₁
—Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
rpow_sub
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
rpow_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
mul_div_assoc
one_div_mul_one_div
one_div_le_one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
lt_of_lt_of_le
add_pos'
IsOrderedAddMonoid.toAddLeftMono
le_of_not_gt
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
le_of_lt
rpow_pos_of_pos
rpowIntegrand₀₁_eq_pow_div
Mathlib.Tactic.Linarith.add_neg
zero_le_one
instZeroLEOneClass
rpowIntegrand₀₁_zero_left 📖mathematicalReal
instLT
instZero
rpowIntegrand₀₁—zero_rpow
LT.lt.ne'
inv_zero
zero_add
zero_sub
mul_neg
MulZeroClass.zero_mul
neg_zero
rpowIntegrand₀₁_zero_right 📖mathematical—rpowIntegrand₀₁
Real
instZero
—add_zero
sub_self
MulZeroClass.mul_zero
rpow_eq_const_mul_integral 📖mathematicalReal
Set
Set.instMembership
Set.Ioo
instPreorder
instZero
instOne
instLE
instPow
instMul
instInv
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
rpowIntegrand₀₁
—eq_or_lt_of_le'
zero_rpow
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
sub_eq_zero_of_eq
rpowIntegrand₀₁_zero_right
MeasureTheory.integral_zero
MulZeroClass.mul_zero
ne_of_gt
integral_rpowIntegrand₀₁_one_pos
integral_rpowIntegrand₀₁_eq_rpow_mul_const
mul_comm
mul_assoc
mul_inv_cancel₀
mul_one

---

← Back to Index