Documentation Verification Report

Order

šŸ“ Source: Mathlib/Analysis/SpecialFunctions/ContinuousFunctionalCalculus/Rpow/Order.lean

Statistics

MetricCount
Definitions0
Theoremsmonotone_nnrpow, monotone_rpow, monotone_sqrt, nnrpow_le_nnrpow, rpow_le_rpow, sqrt_le_sqrt
6
Total6

CFC

Theorems

NameKindAssumesProvesValidatesDepends On
monotone_nnrpow šŸ“–mathematicalNNReal
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
instOneNNReal
Monotone
instPowNNReal
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
SMulCommClass.complexToReal
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
Complex
Complex.instNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
—SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
LE.le.trans
Set.ext
NNReal.instCanonicallyOrderedAdd
Set.union_singleton
Set.Ioo_insert_left
instZeroLEOneClass
NNReal.instStarOrderedRing
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
Set.Ico_insert_right
nnrpow_zero
nnrpow_one
cfcā‚™_apply_of_not_predicate
NNReal.instIsTopologicalSemiring
NNReal.instContinuousStar
Nonneg.instNonUnitalContinuousFunctionalCalculus
monotone_rpow šŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
Monotone
PartialOrder.toPreorder
instPowReal
NormedRing.toRing
CStarAlgebra.toNormedRing
CStarAlgebra.toStarRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedAlgebra.toAlgebra
Real.normedField
NormedAlgebra.complexToReal
CStarAlgebra.toNormedAlgebra
IsSelfAdjoint.instContinuousFunctionalCalculus
Complex
Complex.instNormedField
IsStarNormal.instContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
CStarAlgebra.toNonUnitalCStarAlgebra
—IsSelfAdjoint.instContinuousFunctionalCalculus
IsStarNormal.instContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
LE.le.lt_or_eq'
zero_le
NNReal.instCanonicallyOrderedAdd
Algebra.to_smulCommClass
IsScalarTower.right
ContinuousFunctionalCalculus.toNonUnital
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal
Real.instCompleteSpace
nnrpow_eq_rpow
NonUnitalSeminormedRing.toIsTopologicalRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
monotone_nnrpow
LE.le.trans
rpow_zero
cfc_apply_of_not_predicate
NNReal.instIsTopologicalSemiring
NNReal.instContinuousStar
Nonneg.instContinuousFunctionalCalculus
monotone_sqrt šŸ“–mathematical—Monotone
PartialOrder.toPreorder
sqrt
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
SMulCommClass.complexToReal
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
Complex
Complex.instNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
—SMulCommClass.complexToReal
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
Nat.instAtLeastTwoHAddOfNat
sqrt_eq_nnrpow
monotone_nnrpow
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
NNReal.instIsStrictOrderedRing
NNReal.instCanonicallyOrderedAdd
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Mathlib.Meta.NormNum.isNat_le_true
NNReal.instIsOrderedRing
Nat.cast_zero
nnrpow_le_nnrpow šŸ“–mathematicalNNReal
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
instOneNNReal
Preorder.toLE
instPowNNReal
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
SMulCommClass.complexToReal
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
Complex
Complex.instNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
—monotone_nnrpow
rpow_le_rpow šŸ“–mathematicalReal
Set
Set.instMembership
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
Preorder.toLE
PartialOrder.toPreorder
instPowReal
NormedRing.toRing
CStarAlgebra.toNormedRing
CStarAlgebra.toStarRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NormedAlgebra.toAlgebra
Real.normedField
NormedAlgebra.complexToReal
CStarAlgebra.toNormedAlgebra
IsSelfAdjoint.instContinuousFunctionalCalculus
Complex
Complex.instNormedField
IsStarNormal.instContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
CStarAlgebra.toNonUnitalCStarAlgebra
—monotone_rpow
sqrt_le_sqrt šŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
sqrt
NonUnitalNormedRing.toNonUnitalRing
NonUnitalCStarAlgebra.toNonUnitalNormedRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalCStarAlgebra.toStarRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NormedSpace.complexToReal
NonUnitalCStarAlgebra.toNormedSpace
SMulCommClass.complexToReal
NormedAddCommGroup.toAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
Complex
Complex.instNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalRing.toNonUnitalNonAssocRing
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalCStarAlgebra.toSMulCommClass
IsScalarTower.complexToReal
NonUnitalCStarAlgebra.toIsScalarTower
IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus
IsStarNormal.instNonUnitalContinuousFunctionalCalculus
CStarAlgebra.instNonnegSpectrumClass'
—monotone_sqrt

---

← Back to Index