Documentation Verification Report

Exp

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Exp.lean

Statistics

MetricCount
DefinitionsexpOrderIso
1
Theoremscomap_exp_cobounded, comap_exp_nhdsNE, comap_exp_nhds_zero, continuousOn_exp, continuous_exp, exp_bound_sq, exp_sub_sum_range_isBigO_pow, exp_sub_sum_range_succ_isLittleO_pow, locally_lipschitz_exp, tendsto_exp_comap_re_atBot, tendsto_exp_comap_re_atBot_nhdsNE, tendsto_exp_comap_re_atTop, tendsto_exp_nhds_zero_iff, cexp, rexp, cexp, rexp, cexp, rexp, cexp, rexp, cexp, rexp, cexp, rexp, coe_comp_expOrderIso, coe_expOrderIso_apply, comap_exp_atTop, comap_exp_nhdsGT_zero, comap_exp_nhds_exp, comap_exp_nhds_zero, continuousOn_exp, continuous_exp, exp_half, exp_sub_sum_range_isBigO_pow, exp_sub_sum_range_succ_isLittleO_pow, isBigO_exp_comp_exp_comp, isBigO_exp_comp_one, isBigO_one_exp_comp, isBoundedUnder_ge_exp_comp, isBoundedUnder_le_exp_comp, isLittleO_exp_comp_exp_comp, isLittleO_one_exp_comp, isLittleO_pow_exp_atTop, isOpenEmbedding_exp, isTheta_exp_comp_exp_comp, isTheta_exp_comp_one, map_exp_atBot, map_exp_atTop, map_exp_nhds, mul_exp_neg_le_exp_neg_one, range_exp, summable_exp_nat_mul_iff, summable_exp_nat_mul_of_ge, summable_exp_neg_nat, summable_pow_mul_exp_neg_nat_mul, tendsto_comp_exp_atBot, tendsto_comp_exp_atTop, tendsto_div_pow_mul_exp_add_atTop, tendsto_exp_atBot, tendsto_exp_atBot_nhdsGT, tendsto_exp_atTop, tendsto_exp_comp_atTop, tendsto_exp_comp_nhds_zero, tendsto_exp_div_pow_atTop, tendsto_exp_neg_atTop_nhds_zero, tendsto_exp_nhds_zero_nhds_one, tendsto_mul_exp_add_div_pow_atTop, tendsto_pow_mul_exp_neg_atTop_nhds_zero, cexp
70
Total71

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
comap_exp_cobounded πŸ“–mathematicalβ€”Filter.comap
Complex
exp
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real
re
Filter.atTop
Real.instPreorder
β€”Filter.comap_comap
norm_exp
Real.comap_exp_atTop
comap_exp_nhdsNE πŸ“–mathematicalβ€”Filter.comap
Complex
exp
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Real
re
Filter.atBot
Real.instPreorder
β€”Set.eq_univ_of_forall
exp_ne_zero
Filter.comap_inf
comap_exp_nhds_zero
Filter.comap_principal
Filter.principal_univ
inf_of_le_left
comap_exp_nhds_zero πŸ“–mathematicalβ€”Filter.comap
Complex
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Real
re
Filter.atBot
Real.instPreorder
β€”comap_norm_nhds_zero
Filter.comap_comap
norm_exp
Real.comap_exp_nhds_zero
continuousOn_exp πŸ“–mathematicalβ€”ContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
exp
β€”Continuous.continuousOn
continuous_exp
continuous_exp πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
exp
β€”continuous_iff_continuousAt
continuousAt_of_locally_lipschitz
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Nat.instAtLeastTwoHAddOfNat
dist_eq_norm
one_add_one_eq_two
locally_lipschitz_exp
zero_le_one
le_rfl
exp_bound_sq πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
exp
instAdd
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Real.instMul
Monoid.toNatPow
Real.instMonoid
β€”exp_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
norm_mul
NormedDivisionRing.toNormMulClass
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_exp_sub_one_sub_id_le
norm_nonneg
exp_sub_sum_range_isBigO_pow πŸ“–mathematicalβ€”Asymptotics.IsBigO
Complex
instNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
instSub
exp
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
β€”LE.le.eq_or_lt
zero_le
Nat.instCanonicallyOrderedAdd
sub_zero
pow_zero
NormedDivisionRing.to_normOneClass
Filter.Tendsto.isBoundedUnder_le
BoundedLENhdsClass.of_closedIciTopology
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ContinuousAt.norm
Continuous.continuousAt
continuous_exp
Asymptotics.IsBigO.of_bound
Filter.HasBasis.eventually_iff
NormedAddCommGroup.nhds_zero_basis_norm_lt
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Nat.cast_add
Nat.cast_one
norm_pow
NormedDivisionRing.toNormMulClass
mul_inv_rev
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Nat.factorial_pos
add_pos'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
exp_bound
LT.lt.le
Membership.mem.out
exp_sub_sum_range_succ_isLittleO_pow πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Complex
instNorm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
instSub
exp
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instNatCast
Nat.factorial
β€”Asymptotics.IsBigO.trans_isLittleO
exp_sub_sum_range_isBigO_pow
Asymptotics.isLittleO_pow_pow
locally_lipschitz_exp πŸ“–mathematicalReal
Real.instLE
Real.instZero
Real.instOne
Real.instLT
Norm.norm
Complex
instNorm
instSub
exp
Real.instMul
Real.instAdd
β€”Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
pow_two
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
LT.lt.le
le_rfl
norm_nonneg
exp_bound_sq
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_smul
NormedSpace.toNormSMulClass
LE.le.trans
norm_sub_norm_le
le_imp_le_of_le_of_le
add_le_add_right
mul_le_mul_of_nonneg_left
le_refl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
tendsto_exp_comap_re_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Complex
exp
Filter.comap
Real
re
Filter.atBot
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
β€”Filter.tendsto_comap
comap_exp_nhds_zero
tendsto_exp_comap_re_atBot_nhdsNE πŸ“–mathematicalβ€”Filter.Tendsto
Complex
exp
Filter.comap
Real
re
Filter.atBot
Real.instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Filter.tendsto_comap
comap_exp_nhdsNE
tendsto_exp_comap_re_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Complex
exp
Filter.comap
Real
re
Filter.atTop
Real.instPreorder
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
β€”Filter.tendsto_comap
comap_exp_cobounded
tendsto_exp_nhds_zero_iff πŸ“–mathematicalβ€”Filter.Tendsto
Complex
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Real
re
Filter.atBot
Real.instPreorder
β€”comap_exp_nhds_zero

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalContinuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.expβ€”continuous_iff_continuousAt
ContinuousAt.cexp
continuousAt
rexp πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.expβ€”continuous_iff_continuousAt
ContinuousAt.rexp
continuousAt

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.expβ€”Filter.Tendsto.cexp
rexp πŸ“–mathematicalContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.expβ€”Filter.Tendsto.rexp

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalContinuousOn
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.expβ€”ContinuousWithinAt.cexp
rexp πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.expβ€”ContinuousWithinAt.rexp

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalContinuousWithinAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.expβ€”Filter.Tendsto.cexp
rexp πŸ“–mathematicalContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.expβ€”Filter.Tendsto.rexp

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalFilter.Tendsto
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.expβ€”comp
Continuous.tendsto
Complex.continuous_exp
rexp πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.expβ€”comp
Continuous.tendsto
Real.continuous_exp

HasSum

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalHasSum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Complex.instNormedAddCommGroup
SummationFilter.unconditional
HasProd
CommRing.toCommMonoid
Complex.commRing
Complex.exp
β€”Filter.Tendsto.congr
Complex.exp_sum
Filter.Tendsto.cexp
rexp πŸ“–mathematicalHasSum
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
HasProd
Real.instCommMonoid
Real.exp
β€”Filter.Tendsto.congr
Real.exp_sum
Filter.Tendsto.rexp

Real

Definitions

NameCategoryTheorems
expOrderIso πŸ“–CompOp
4 mathmath: coe_expOrderIso_apply, log_of_pos, coe_comp_expOrderIso, log_of_ne_zero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp_expOrderIso πŸ“–mathematicalβ€”Real
Set.Elem
Set.Ioi
instPreorder
instZero
Set
Set.instMembership
DFunLike.coe
OrderIso
instLE
instFunLikeOrderIso
expOrderIso
exp
β€”β€”
coe_expOrderIso_apply πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioi
instPreorder
instZero
DFunLike.coe
OrderIso
Set.Elem
instLE
instFunLikeOrderIso
expOrderIso
exp
β€”β€”
comap_exp_atTop πŸ“–mathematicalβ€”Filter.comap
Real
exp
Filter.atTop
instPreorder
β€”map_exp_atTop
Filter.comap_map
exp_injective
comap_exp_nhdsGT_zero πŸ“–mathematicalβ€”Filter.comap
Real
exp
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Set.Ioi
instPreorder
Filter.atBot
β€”map_exp_atBot
Filter.comap_map
exp_injective
comap_exp_nhds_exp πŸ“–mathematicalβ€”Filter.comap
Real
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”Topology.IsInducing.nhds_eq_comap
Topology.IsEmbedding.toIsInducing
Topology.IsOpenEmbedding.toIsEmbedding
isOpenEmbedding_exp
comap_exp_nhds_zero πŸ“–mathematicalβ€”Filter.comap
Real
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Filter.atBot
instPreorder
β€”comap_nhdsWithin_range
range_exp
comap_exp_nhdsGT_zero
continuousOn_exp πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
β€”Continuous.continuousOn
continuous_exp
continuous_exp πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
β€”Continuous.comp'
Complex.continuous_re
Continuous.cexp
Complex.continuous_ofReal
exp_half πŸ“–mathematicalβ€”exp
Real
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sqrt
β€”Nat.instAtLeastTwoHAddOfNat
sqrt_eq_iff_eq_sq
LT.lt.le
exp_pos
sq
exp_add
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
exp_sub_sum_range_isBigO_pow πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
instSub
exp
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
β€”Asymptotics.IsBigO.comp_tendsto
Complex.exp_sub_sum_range_isBigO_pow
Continuous.tendsto'
Complex.continuous_ofReal
Nat.cast_zero
Finset.sum_congr
exp_sub_sum_range_succ_isLittleO_pow πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
instSub
exp
Finset.sum
instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instNatCast
Nat.factorial
β€”Asymptotics.IsBigO.trans_isLittleO
exp_sub_sum_range_isBigO_pow
Asymptotics.isLittleO_pow_pow
isBigO_exp_comp_exp_comp πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
exp
Filter.IsBoundedUnder
instLE
Pi.instSub
instSub
β€”Asymptotics.isBigO_iff_isBoundedUnder_le_div
Filter.Eventually.of_forall
exp_ne_zero
abs_exp
isBigO_exp_comp_one πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
exp
instOne
Filter.IsBoundedUnder
instLE
β€”NormedDivisionRing.to_normOneClass
abs_exp
isBigO_one_exp_comp πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
instOne
exp
Filter.IsBoundedUnder
instLE
β€”zero_sub
instIsOrderedAddMonoid
isBoundedUnder_ge_exp_comp πŸ“–mathematicalβ€”Filter.IsBoundedUnder
Real
instLE
exp
β€”Filter.isBoundedUnder_of
LT.lt.le
exp_pos
isBoundedUnder_le_exp_comp πŸ“–mathematicalβ€”Filter.IsBoundedUnder
Real
instLE
exp
β€”Monotone.isBoundedUnder_le_comp_iff
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
exp_monotone
tendsto_exp_atTop
isLittleO_exp_comp_exp_comp πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
exp
Filter.Tendsto
instSub
Filter.atTop
instPreorder
β€”instIsOrderedAddMonoid
neg_sub
isLittleO_one_exp_comp πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
instOne
exp
Filter.Tendsto
Filter.atTop
instPreorder
β€”sub_zero
isLittleO_pow_exp_atTop πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
Filter.atTop
instPreorder
Monoid.toNatPow
instMonoid
exp
β€”Asymptotics.isLittleO_iff_tendsto
LT.lt.ne'
exp_pos
one_mul
add_zero
tendsto_div_pow_mul_exp_add_atTop
zero_ne_one
NeZero.charZero_one
RCLike.charZero_rclike
isOpenEmbedding_exp πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
β€”Topology.IsOpenEmbedding.comp
instOrderTopologyReal
orderTopology_of_ordConnected
Set.ordConnected_Ioi
IsOpen.isOpenEmbedding_subtypeVal
isOpen_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
Homeomorph.isOpenEmbedding
isTheta_exp_comp_exp_comp πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
norm
exp
Filter.IsBoundedUnder
instLE
abs
lattice
instAddGroup
instSub
β€”instIsOrderedAddMonoid
neg_sub
isTheta_exp_comp_one πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
norm
exp
instOne
Filter.IsBoundedUnder
instLE
abs
lattice
instAddGroup
β€”sub_zero
map_exp_atBot πŸ“–mathematicalβ€”Filter.map
Real
exp
Filter.atBot
instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Set.Ioi
β€”coe_comp_expOrderIso
Filter.map_map
OrderIso.map_atBot
map_coe_Ioi_atBot
instOrderTopologyReal
Order.IsPredPrelimit.of_dense
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
map_exp_atTop πŸ“–mathematicalβ€”Filter.map
Real
exp
Filter.atTop
instPreorder
β€”coe_comp_expOrderIso
Filter.map_map
OrderIso.map_atTop
Filter.map_val_Ioi_atTop
instIsDirectedOrder
instIsOrderedRing
instArchimedean
instNoMaxOrderOfNontrivial
instNontrivial
map_exp_nhds πŸ“–mathematicalβ€”Filter.map
Real
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”Topology.IsOpenEmbedding.map_nhds_eq
isOpenEmbedding_exp
mul_exp_neg_le_exp_neg_one πŸ“–mathematicalβ€”Real
instLE
instMul
exp
instNeg
instOne
β€”sub_add_cancel
add_one_le_exp
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
le_of_lt
exp_pos
sub_add_eq_add_sub
add_neg_cancel
zero_sub
range_exp πŸ“–mathematicalβ€”Set.range
Real
exp
Set.Ioi
instPreorder
instZero
β€”coe_comp_expOrderIso
Set.range_comp
OrderIso.range_eq
Set.image_univ
Subtype.range_coe
summable_exp_nat_mul_iff πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
instMul
instNatCast
SummationFilter.unconditional
instLT
instZero
β€”exp_nat_mul
norm_of_nonneg
exp_nonneg
summable_exp_nat_mul_of_ge πŸ“–mathematicalReal
instLT
instZero
instLE
instNatCast
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
instMul
SummationFilter.unconditional
β€”Summable.of_nonneg_of_le
le_of_lt
exp_pos
exp_monotone
mul_comm
mul_le_mul_of_nonpos_left
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
LT.lt.le
summable_exp_nat_mul_iff
summable_exp_neg_nat πŸ“–mathematicalβ€”Summable
Real
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
instNeg
instNatCast
SummationFilter.unconditional
β€”mul_neg_one
summable_exp_nat_mul_iff
neg_one_lt_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
summable_pow_mul_exp_neg_nat_mul πŸ“–mathematicalReal
instLT
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
Monoid.toNatPow
instMonoid
instNatCast
exp
instNeg
SummationFilter.unconditional
β€”mul_comm
exp_nat_mul
summable_pow_mul_geometric_of_norm_lt_one
instHasSummableGeomSeries
norm_of_nonneg
exp_nonneg
exp_lt_one_iff
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
tendsto_comp_exp_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atBot
instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Set.Ioi
β€”map_exp_atBot
Filter.tendsto_map'_iff
tendsto_comp_exp_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atTop
instPreorder
β€”map_exp_atTop
tendsto_div_pow_mul_exp_add_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instAdd
instMul
exp
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”inv_div
Filter.Tendsto.inv_tendsto_atTop
instIsStrictOrderedRing
instOrderTopologyReal
tendsto_mul_exp_add_div_pow_atTop
lt_or_gt_of_ne
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
neg_mul
mul_neg
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
neg_add
div_neg
neg_neg
neg_zero
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
tendsto_exp_atBot πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atBot
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”Filter.Tendsto.congr
neg_neg
Filter.Tendsto.comp
tendsto_exp_neg_atTop_nhds_zero
Filter.tendsto_neg_atBot_atTop
instIsOrderedAddMonoid
tendsto_exp_atBot_nhdsGT πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atBot
instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Set.Ioi
β€”Filter.tendsto_inf
tendsto_exp_atBot
Filter.tendsto_principal
Filter.Eventually.of_forall
exp_pos
tendsto_exp_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atTop
instPreorder
β€”Filter.tendsto_atTop_add_const_right
instIsOrderedAddMonoid
Filter.tendsto_id
Filter.eventually_atTop
instIsDirectedOrder
instIsOrderedRing
instArchimedean
add_one_le_exp
Filter.tendsto_atTop_mono'
tendsto_exp_comp_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
Filter.atTop
instPreorder
β€”comap_exp_atTop
tendsto_exp_comp_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Filter.atBot
instPreorder
β€”comap_exp_nhds_zero
tendsto_exp_div_pow_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
instDivInvMonoid
exp
Monoid.toNatPow
instMonoid
Filter.atTop
instPreorder
β€”Filter.HasBasis.tendsto_iff
Filter.atTop_basis_Ioi
instIsDirectedOrder
instIsOrderedRing
instArchimedean
instNoMaxOrderOfNontrivial
instNontrivial
Filter.atTop_basis'
LT.lt.trans_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
mul_pos
exp_pos
Filter.eventually_atTop
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.eventually
tendsto_pow_const_div_const_pow_of_one_lt
one_lt_exp_iff
gt_mem_nhds
instOrderTopologyReal
LE.le.trans_lt
Nat.cast_nonneg
Set.mem_Ioi
Set.mem_Ici
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_pos
le_div_iffβ‚€'
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
le_of_lt
Nat.le_ceil
Nat.cast_one
LT.lt.le
mul_one
Nat.lt_ceil
div_le_div_of_nonneg_right
exp_monotone
Nat.ceil_lt_add_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
add_comm
exp_add
mul_div_mul_left
LT.lt.ne'
tendsto_exp_neg_atTop_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
instNeg
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”Filter.Tendsto.congr
exp_neg
Filter.Tendsto.comp
tendsto_inv_atTop_zero
instIsStrictOrderedRing
instOrderTopologyReal
tendsto_exp_atTop
tendsto_exp_nhds_zero_nhds_one πŸ“–mathematicalβ€”Filter.Tendsto
Real
exp
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
instOne
β€”exp_zero
Continuous.tendsto
continuous_exp
tendsto_mul_exp_add_div_pow_atTop πŸ“–mathematicalReal
instLT
instZero
Filter.Tendsto
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instMul
exp
Monoid.toNatPow
instMonoid
Filter.atTop
instPreorder
β€”eq_or_ne
pow_zero
div_one
Filter.Tendsto.atTop_add
instIsOrderedAddMonoid
instOrderTopologyReal
Filter.Tendsto.const_mul_atTop
instIsStrictOrderedRing
tendsto_exp_atTop
tendsto_const_nhds
add_div
mul_div_assoc
tendsto_exp_div_pow_atTop
Filter.Tendsto.div_atTop
Filter.tendsto_pow_atTop
instIsOrderedRing
tendsto_pow_mul_exp_neg_atTop_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
Real
instMul
Monoid.toNatPow
instMonoid
exp
instNeg
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”Filter.Tendsto.congr
inv_eq_one_div
div_div_eq_mul_div
one_mul
div_eq_mul_inv
exp_neg
Filter.Tendsto.comp
tendsto_inv_atTop_zero
instIsStrictOrderedRing
instOrderTopologyReal
tendsto_exp_div_pow_atTop

UniformContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
cexp πŸ“–mathematicalβ€”UniformContinuousOn
Complex
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.exp
setOf
Real
Real.instLE
Complex.re
β€”Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.cexp
continuous_id'
continuous_one
Metric.uniformContinuousOn_iff
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.exp_pos
dist_sub_eq_dist_add_right
sub_add_cancel
Metric.continuous_iff'
Metric.eventually_nhds_iff
dist_zero_right
dist_eq_norm
mul_sub_one
Complex.exp_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg
mul_comm
Complex.norm_exp
norm_mul
NormedDivisionRing.toNormMulClass
lt_of_le_of_lt
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
LT.lt.le
Complex.exp_zero
Real.exp_nonneg
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_pos
Real.instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike

---

← Back to Index