Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/Analysis/SpecialFunctions/Gamma/Basic.lean

Statistics

MetricCount
DefinitionsGammaAux, GammaIntegral, partialGamma, evalGamma
4
TheoremsGammaAux_recurrence1, GammaAux_recurrence2, GammaIntegral_add_one, GammaIntegral_conj, GammaIntegral_convergent, GammaIntegral_ofReal, GammaIntegral_one, Gamma_add_one, Gamma_conj, Gamma_def, Gamma_eq_GammaAux, Gamma_eq_integral, Gamma_nat_eq_factorial, Gamma_neg_nat_eq_zero, Gamma_ofNat_eq_factorial, Gamma_ofReal, Gamma_one, Gamma_zero, integral_cpow_mul_exp_neg_mul_Ioi, partialGamma_add_one, tendsto_partialGamma, GammaIntegral_convergent, Gamma_add_one, Gamma_eq_integral, Gamma_eq_zero_iff, Gamma_integrand_isLittleO, Gamma_nat_eq_factorial, Gamma_ne_zero, Gamma_neg_nat_eq_zero, Gamma_nonneg_of_nonneg, Gamma_ofNat_eq_factorial, Gamma_one, Gamma_pos_of_pos, Gamma_zero, integral_rpow_mul_exp_neg_mul_Ioi
35
Total39

Complex

Definitions

NameCategoryTheorems
GammaAux ๐Ÿ“–CompOp
5 mathmath: differentiableAt_GammaAux, Gamma_eq_GammaAux, GammaAux_recurrence1, GammaAux_recurrence2, Gamma_def
GammaIntegral ๐Ÿ“–CompOp
8 mathmath: GammaIntegral_eq_mellin, hasDerivAt_GammaIntegral, GammaIntegral_ofReal, GammaIntegral_one, tendsto_partialGamma, Gamma_eq_integral, GammaIntegral_add_one, GammaIntegral_conj
partialGamma ๐Ÿ“–CompOp
2 mathmath: partialGamma_add_one, tendsto_partialGamma

Theorems

NameKindAssumesProvesValidatesDepends On
GammaAux_recurrence1 ๐Ÿ“–mathematicalReal
Real.instLT
Real.instNeg
re
Real.instNatCast
GammaAux
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
instOne
โ€”GammaIntegral_add_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_comm
mul_div_cancel_rightโ‚€
EuclideanDomain.toMulDivCancelClass
Mathlib.Tactic.Contrapose.contraposeโ‚ƒ
add_re
one_re
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Nat.cast_add
Mathlib.Tactic.Linarith.sub_nonpos_of_le
GammaAux_recurrence2 ๐Ÿ“–mathematicalReal
Real.instLT
Real.instNeg
re
Real.instNatCast
GammaAuxโ€”GammaIntegral_add_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_div_cancel_leftโ‚€
EuclideanDomain.toMulDivCancelClass
LT.lt.false
zero_re
add_re
one_re
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Nat.cast_add
Mathlib.Tactic.Linarith.sub_nonpos_of_le
GammaAux_recurrence1
GammaIntegral_add_one ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
GammaIntegral
Complex
instAdd
instOne
instMul
โ€”Filter.eventuallyEq_of_mem
Filter.Ici_mem_atTop
partialGamma_add_one
Set.mem_Ici
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
Filter.Tendsto.congr'
tendsto_zero_iff_norm_tendsto_zero
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
norm_mul
NormedDivisionRing.toNormMulClass
norm_neg
norm_cpow_eq_rpow_re_of_pos
norm_of_nonneg
LT.lt.le
Real.exp_pos
neg_mul
one_mul
Filter.tendsto_congr'
tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
ofReal_exp
ofReal_neg
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
tendsto_partialGamma
tendsto_nhds_unique
instT2Space
Filter.atTop_neBot
instIsDirectedOrder
Real.instArchimedean
add_re
one_re
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
GammaIntegral_conj ๐Ÿ“–mathematicalโ€”GammaIntegral
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
โ€”GammaIntegral.eq_1
integral_conj
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
conj_ofReal
cpow_def_of_ne_zero
ofReal_ne_zero
ne_of_gt
exp_conj
ofReal_log
le_of_lt
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
GammaIntegral_convergent ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
MeasureTheory.IntegrableOn
Complex
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
instMul
ofReal
Real.exp
Real.instNeg
instPow
instSub
instOne
Set.Ioi
Real.instPreorder
MeasureTheory.MeasureSpace.volume
โ€”ContinuousOn.aestronglyMeasurable
secondCountableTopologyEither_of_right
secondCountable_of_proper
instProperSpace
BorelSpace.opensMeasurable
Real.borelSpace
PseudoEMetricSpace.pseudoMetrizableSpace
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.continuousOn
Continuous.comp
continuous_ofReal
Continuous.rexp
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
continuousOn_of_forall_continuousAt
continuousAt_cpow_const
ofReal_mem_slitPlane
ContinuousAt.comp
Continuous.continuousAt
measurableSet_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.hasFiniteIntegral_norm_iff
MeasureTheory.HasFiniteIntegral.congr
Real.GammaIntegral_convergent
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_restrict_iff'
Filter.univ_mem'
norm_mul
NormedDivisionRing.toNormMulClass
norm_of_nonneg
le_of_lt
Real.exp_pos
norm_cpow_eq_rpow_re_of_pos
GammaIntegral_ofReal ๐Ÿ“–mathematicalโ€”GammaIntegral
ofReal
MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
Real.instPreorder
Real.instZero
Real.instMul
Real.exp
Real.instNeg
Real.instPow
Real.instSub
Real.instOne
โ€”GammaIntegral.eq_1
integral_ofReal
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ofReal_mul
ofReal_cpow
LT.lt.le
Set.mem_Ioi
ofReal_exp
ofReal_neg
ofReal_sub
GammaIntegral_one ๐Ÿ“–mathematicalโ€”GammaIntegral
Complex
instOne
โ€”GammaIntegral_ofReal
sub_self
Real.rpow_zero
mul_one
integral_exp_neg_Ioi_zero
Gamma_add_one ๐Ÿ“–mathematicalโ€”Gamma
Complex
instAdd
instOne
instMul
โ€”Real.instIsStrictOrderedRing
sub_sub_cancel_left
Nat.sub_one_lt_floor
add_re
one_re
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Gamma_eq_GammaAux
GammaAux_recurrence1
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚ƒ
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Gamma_conj ๐Ÿ“–mathematicalโ€”Gamma
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
โ€”GammaAux.eq_1
GammaIntegral_conj
GammaAux.eq_2
div_eq_mul_inv
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
conj_inv
map_add
SemilinearMapClass.toAddHomClass
instCharZero
RingHomClass.toLinearMapClassNNRat
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Real.instIsStrictOrderedRing
Gamma_def
Gamma_def ๐Ÿ“–mathematicalโ€”Gamma
GammaAux
Nat.floor
Real
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Real.instSub
Real.instOne
re
โ€”Real.instIsStrictOrderedRing
Gamma_eq_GammaAux ๐Ÿ“–mathematicalReal
Real.instLT
Real.instNeg
re
Real.instNatCast
Gamma
GammaAux
โ€”Real.instIsStrictOrderedRing
add_zero
Gamma_def
add_assoc
GammaAux_recurrence2
Nat.cast_add
Nat.sub_one_lt_floor
lt_add_of_lt_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_sub_cancel_left
Nat.cast_zero
Nat.cast_le
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.cast_one
lt_of_le_of_lt
Nat.floor_le
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.floor_of_nonpos
le_of_not_gt
Mathlib.Tactic.Linarith.add_neg
Gamma_eq_integral ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
Gamma
GammaIntegral
โ€”Gamma_eq_GammaAux
Nat.cast_zero
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Gamma_nat_eq_factorial ๐Ÿ“–mathematicalโ€”Gamma
Complex
instAdd
instNatCast
instOne
Nat.factorial
โ€”CharP.cast_eq_zero
CharP.ofCharZero
instCharZero
zero_add
Gamma_one
Nat.cast_one
Gamma_add_one
Nat.cast_ne_zero
Nat.cast_succ
Nat.cast_mul
Gamma_neg_nat_eq_zero ๐Ÿ“–mathematicalโ€”Gamma
Complex
instNeg
instNatCast
instZero
โ€”Nat.cast_zero
neg_zero
Gamma_zero
neg_ne_zero
Nat.cast_ne_zero
instCharZero
Nat.cast_add
Nat.cast_one
neg_add_rev
neg_add_cancel_comm
Mathlib.Tactic.Contrapose.contraposeโ‚
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Gamma_add_one
Gamma_ofNat_eq_factorial ๐Ÿ“–mathematicalโ€”Gamma
Complex
instNatCast
Nat.factorial
โ€”Nat.cast_one
Gamma_nat_eq_factorial
Gamma_ofReal ๐Ÿ“–mathematicalโ€”Gamma
ofReal
Real.Gamma
โ€”Real.Gamma.eq_1
conj_eq_iff_re
Gamma_conj
conj_ofReal
Gamma_one ๐Ÿ“–mathematicalโ€”Gamma
Complex
instOne
โ€”Gamma_eq_integral
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
GammaIntegral_one
Gamma_zero ๐Ÿ“–mathematicalโ€”Gamma
Complex
instZero
โ€”Real.instIsStrictOrderedRing
Gamma_def
sub_zero
Nat.floor_one
div_zero
integral_cpow_mul_exp_neg_mul_Ioi ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
MeasureTheory.integral
Complex
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
Real.instPreorder
instMul
instPow
ofReal
instSub
instOne
exp
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
Gamma
โ€”cpow_one
cpow_add
one_div_ne_zero
ofReal_ne_zero
LT.lt.ne'
add_sub_cancel
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
mul_cpow_ofReal_nonneg
LT.lt.le
Set.mem_Ioi
mul_assoc
one_div
ofReal_inv
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
ofReal_mul
inv_mul_cancelโ‚€
ofReal_one
one_cpow
one_mul
MeasureTheory.integral_comp_mul_left_Ioi
MulZeroClass.mul_zero
real_smul
ofReal_div
Gamma_eq_integral
ofReal_exp
ofReal_neg
mul_comm
partialGamma_add_one ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
Real.instLE
partialGamma
Complex
instAdd
instOne
instSub
instMul
ofReal
Real.exp
Real.instNeg
instPow
โ€”partialGamma.eq_1
add_sub_cancel_right
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
HasDerivAt.congr_simp
mul_neg
mul_one
HasDerivAt.exp
hasDerivAt_neg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
HasDerivAt.cpow_const
hasDerivAt_id
ofReal_mem_slitPlane
HasDerivAt.comp_ofReal
ofReal_neg
neg_mul
HasDerivAt.mul
HasDerivAt.ofReal_comp
Continuous.mul
Continuous.comp
continuous_ofReal
Continuous.rexp
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
continuous_ofReal_cpow_const
IntervalIntegrable.add
IsTopologicalSemiring.toContinuousAdd
intervalIntegral.integral_eq_sub_of_hasDerivAt_of_le
instCompleteSpace
Continuous.continuousOn
eq_sub_of_add_eq
neg_neg
neg_add
intervalIntegral.integral_neg
intervalIntegral.integral_add
sub_neg_eq_add
neg_sub
add_comm
add_sub
Mathlib.Tactic.Contrapose.contraposeโ‚ƒ
zero_re
le_refl
zero_cpow
MulZeroClass.mul_zero
add_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
tendsto_partialGamma ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
re
Filter.Tendsto
Complex
partialGamma
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
GammaIntegral
โ€”MeasureTheory.intervalIntegral_tendsto_integral_Ioi
instIsCountablyGenerated_atTop
instOrderTopologyReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
GammaIntegral_convergent
Filter.tendsto_id

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalGamma ๐Ÿ“–CompOpโ€”

Real

Theorems

NameKindAssumesProvesValidatesDepends On
GammaIntegral_convergent ๐Ÿ“–mathematicalReal
instLT
instZero
MeasureTheory.IntegrableOn
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
instMul
exp
instNeg
instPow
instSub
instOne
Set.Ioi
instPreorder
MeasureTheory.MeasureSpace.volume
โ€”Set.Ioc_union_Ioi_eq_Ioi
zero_le_one
instZeroLEOneClass
MeasureTheory.integrableOn_union
PseudoEMetricSpace.pseudoMetrizableSpace
integrableOn_Icc_iff_integrableOn_Ioc
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
borelSpace
instSecondCountableTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
noAtoms_volume
enorm_ne_top
MeasureTheory.IntegrableOn.continuousOn_mul
secondCountableTopologyEither_of_right
ContinuousOn.rexp
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
continuousOn_id
intervalIntegrable_iff_integrableOn_Icc_of_le
intervalIntegral.intervalIntegrable_rpow'
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
integrable_of_isBigO_exp_neg
Nat.instAtLeastTwoHAddOfNat
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
ContinuousOn.rpow_const
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
NeZero.charZero_one
RCLike.charZero_rclike
Asymptotics.IsLittleO.isBigO
Gamma_integrand_isLittleO
Gamma_add_one ๐Ÿ“–mathematicalโ€”Gamma
Real
instAdd
instOne
instMul
โ€”Complex.ofReal_add
Complex.ofReal_one
Complex.Gamma_add_one
Complex.ofReal_ne_zero
Complex.re_ofReal_mul
Gamma_eq_integral ๐Ÿ“–mathematicalReal
instLT
instZero
Gamma
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
instPreorder
instMul
exp
instNeg
instPow
instSub
instOne
โ€”Gamma.eq_1
Complex.Gamma_eq_integral
Complex.ofReal_re
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
Complex.ofReal_exp
Complex.ofReal_neg
Complex.ofReal_sub
Complex.ofReal_mul
Complex.ofReal_cpow
le_of_lt
integral_ofReal
Gamma_eq_zero_iff ๐Ÿ“–mathematicalโ€”Gamma
Real
instZero
instNeg
instNatCast
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚
Gamma_ne_zero
Gamma_neg_nat_eq_zero
Gamma_integrand_isLittleO ๐Ÿ“–mathematicalโ€”Asymptotics.IsLittleO
Real
norm
Filter.atTop
instPreorder
instMul
exp
instNeg
instPow
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
โ€”Asymptotics.isLittleO_of_tendsto
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne'
exp_pos
exp_neg
one_div
neg_mul
div_inv_eq_mul
inv_div
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚ƒ
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_evalโ‚ƒ
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
nsmul_eq_mul
mul_inv_cancel_leftโ‚€
RCLike.charZero_rclike
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalโ‚
Filter.Tendsto.inv_tendsto_atTop
instIsStrictOrderedRing
instOrderTopologyReal
tendsto_exp_mul_div_rpow_atTop
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Gamma_nat_eq_factorial ๐Ÿ“–mathematicalโ€”Gamma
Real
instAdd
instNatCast
instOne
Nat.factorial
โ€”Gamma.eq_1
Complex.ofReal_add
Complex.ofReal_natCast
Complex.ofReal_one
Complex.Gamma_nat_eq_factorial
Complex.ofReal_re
Gamma_ne_zero ๐Ÿ“–โ€”โ€”โ€”โ€”LT.lt.ne'
Gamma_pos_of_pos
neg_zero
Nat.cast_zero
Mathlib.Tactic.Contrapose.contraposeโ‚„
eq_sub_iff_add_eq
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
neg_add
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_ne_zero_iff
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Gamma_add_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Nat.lt_floor_add_one
Gamma_neg_nat_eq_zero ๐Ÿ“–mathematicalโ€”Gamma
Real
instNeg
instNatCast
instZero
โ€”Complex.Gamma_ofReal
Complex.Gamma_neg_nat_eq_zero
Gamma_nonneg_of_nonneg ๐Ÿ“–mathematicalReal
instLE
instZero
Gammaโ€”eq_or_lt_of_le
Gamma_zero
le_refl
LT.lt.le
Gamma_pos_of_pos
Gamma_ofNat_eq_factorial ๐Ÿ“–mathematicalโ€”Gamma
Real
instNatCast
Nat.factorial
โ€”Nat.cast_one
Gamma_nat_eq_factorial
Gamma_one ๐Ÿ“–mathematicalโ€”Gamma
Real
instOne
โ€”Gamma.eq_1
Complex.ofReal_one
Complex.Gamma_one
Complex.one_re
Gamma_pos_of_pos ๐Ÿ“–mathematicalReal
instLT
instZero
Gammaโ€”Gamma_eq_integral
Set.inter_eq_right
Function.mem_support
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LT.lt.ne'
exp_pos
rpow_pos_of_pos
MeasureTheory.setIntegral_pos_iff_support_of_nonneg_ae
Filter.eventually_of_mem
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.self_mem_ae_restrict
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
LT.lt.le
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
GammaIntegral_convergent
volume_Ioi
ENNReal.ofReal_zero
ENNReal.ofReal_lt_top
Gamma_zero ๐Ÿ“–mathematicalโ€”Gamma
Real
instZero
โ€”Complex.Gamma_ofReal
Complex.Gamma_zero
integral_rpow_mul_exp_neg_mul_Ioi ๐Ÿ“–mathematicalReal
instLT
instZero
MeasureTheory.integral
normedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
instPreorder
instMul
instPow
instSub
instOne
exp
instNeg
DivInvMonoid.toDiv
instDivInvMonoid
Gamma
โ€”Complex.ofReal_mul
Complex.Gamma_ofReal
Complex.ofReal_cpow
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Complex.ofReal_div
integral_ofReal
MeasureTheory.setIntegral_congr_fun
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
LT.lt.le
RCLike.ofReal_mul
Complex.integral_cpow_mul_exp_neg_mul_Ioi
Complex.ofReal_re

---

โ† Back to Index