Documentation Verification Report

BohrMollerup

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Gamma/BohrMollerup.lean

Statistics

MetricCount
DefinitionslogGammaSeq, doublingGamma
2
Theoremsf_add_nat_eq, f_add_nat_ge, f_add_nat_le, f_nat_eq, ge_logGammaSeq, le_logGammaSeq, logGammaSeq_add_one, tendsto_logGammaSeq, tendsto_logGammaSeq_of_le_one, tendsto_log_gamma, Gamma_mul_Gamma_add_half_of_pos, Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma, Gamma_strictAntiOn_Ioc, Gamma_strictMonoOn_Ici, Gamma_three_div_two_lt_one, Gamma_two, convexOn_Gamma, convexOn_log_Gamma, doublingGamma_add_one, doublingGamma_eq_Gamma, doublingGamma_log_convex_Ioi, doublingGamma_one, eq_Gamma_of_log_convex, exists_isMinOn_Gamma_Ioi, log_doublingGamma_eq
25
Total27

Real

Definitions

NameCategoryTheorems
doublingGamma πŸ“–CompOp
5 mathmath: doublingGamma_eq_Gamma, doublingGamma_log_convex_Ioi, doublingGamma_add_one, doublingGamma_one, log_doublingGamma_eq

Theorems

NameKindAssumesProvesValidatesDepends On
Gamma_mul_Gamma_add_half_of_pos πŸ“–mathematicalReal
instLT
instZero
instMul
Gamma
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instPow
instSub
sqrt
pi
β€”Nat.instAtLeastTwoHAddOfNat
doublingGamma_eq_Gamma
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
doublingGamma.eq_1
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
two_ne_zero'
CharZero.NeZero.two
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
rpow_neg
zero_le_two
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
rpow_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.instAtLeastTwo
sqrt_pos_of_pos
pi_pos
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Gamma_pos_of_pos
add_pos'
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Nat.cast_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma πŸ“–mathematicalReal
instLT
instZero
instAdd
instOne
instLE
Gamma
instMul
instPow
β€”holderConjugate_one_div
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
LT.lt.le
exp_pos
rpow_pos_of_pos
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_restrict_iff'
measurableSet_Ioi
BorelSpace.opensMeasurable
borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.ae_of_all
mul_rpow
rpow_nonneg
exp_mul
rpow_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
neg_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
ENNReal.ofReal_eq_zero
not_le
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
ENNReal.ofReal_ne_top
MeasureTheory.memLp_norm_rpow_iff
ContinuousOn.aestronglyMeasurable
secondCountableTopologyEither_of_right
instSecondCountableTopologyReal
PseudoEMetricSpace.pseudoMetrizableSpace
ContinuousOn.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousOn.rexp
ContinuousOn.fun_mul
continuousOn_const
continuousOn_id'
continuousOn_of_forall_continuousAt
continuousAt_rpow_const
LT.lt.ne'
Set.mem_Ioi
ENNReal.toReal_ofReal
one_div_nonneg
ENNReal.div_self
MeasureTheory.memLp_one_iff_integrable
MeasureTheory.Integrable.congr
GammaIntegral_convergent
Filter.eventuallyEq_of_mem
MeasureTheory.self_mem_ae_restrict
norm_of_nonneg
Gamma_eq_integral
MeasureTheory.setIntegral_congr_fun
exp_add
add_mul
Distrib.rightDistribClass
neg_add
neg_one_mul
rpow_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
one_div_one_div
MeasureTheory.integral_mul_le_Lp_mul_Lq_of_nonneg
Gamma_strictAntiOn_Ioc πŸ“–mathematicalβ€”StrictAntiOn
Real
instPreorder
Gamma
Set.Ioc
instZero
instOne
β€”ConvexOn.strictAntiOn
instIsStrictOrderedRing
convexOn_Gamma
Nat.instAtLeastTwoHAddOfNat
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Gamma_three_div_two_lt_one
Gamma_one
Gamma_strictMonoOn_Ici πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
Gamma
Set.Ici
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Set.inter_eq_right
LT.lt.trans_le
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Set.mem_Ici
ConvexOn.strictMonoOn
instIsStrictOrderedRing
convexOn_Gamma
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
Gamma_three_div_two_lt_one
Gamma_two
Gamma_three_div_two_lt_one πŸ“–mathematicalβ€”Real
instLT
Gamma
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instIsOrderedRing
instNontrivial
BohrMollerup.f_add_nat_le
convexOn_log_Gamma
Gamma_add_one
LT.lt.ne'
log_mul
Gamma_pos_of_pos
add_comm
two_ne_zero
one_half_pos
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
LE.le.trans_lt
log_le_iff_le_exp
le_sub_iff_add_le'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.isNNRat_add
zero_add
log_one
Gamma_two
Nat.cast_two
exp_lt_one_iff
mul_comm
mul_div_assoc
div_sub'
CharZero.NeZero.two
div_neg_of_neg_of_pos
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_one
log_pow
exp_lt_exp
exp_log
two_pos
instZeroLEOneClass
NeZero.charZero_one
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Gamma_two πŸ“–mathematicalβ€”Gamma
Real
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
β€”Nat.instAtLeastTwoHAddOfNat
Gamma_ofNat_eq_factorial
Nat.cast_one
convexOn_Gamma πŸ“–mathematicalβ€”ConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
instPreorder
instZero
Gamma
β€”ConvexOn.congr
ConvexOn.comp
ConvexOn.subset
convexOn_exp
Set.subset_univ
convex_iff_isPreconnected
IsPreconnected.image
isPreconnected_Ioi
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
ContinuousAt.continuousWithinAt
ContinuousAt.log
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_Gamma
LT.lt.ne'
neg_lt_iff_pos_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_pos_of_pos_of_nonneg
Set.mem_Ioi
Nat.cast_nonneg
instIsOrderedRing
Gamma_pos_of_pos
convexOn_log_Gamma
Monotone.monotoneOn
exp_monotone
exp_log
convexOn_log_Gamma πŸ“–mathematicalβ€”ConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
instPreorder
instZero
log
Gamma
β€”convexOn_iff_forall_pos
convex_Ioi
instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
log_rpow
Gamma_pos_of_pos
log_mul
ne_of_gt
rpow_pos_of_pos
log_le_log
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Gamma_mul_add_mul_le_rpow_Gamma_mul_rpow_Gamma
doublingGamma_add_one πŸ“–mathematicalβ€”doublingGamma
Real
instAdd
instOne
instMul
β€”doublingGamma.eq_1
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
add_div
add_assoc
Nat.instAtLeastTwoHAddOfNat
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
Gamma_add_one
div_ne_zero
two_ne_zero
rpow_add
two_pos
instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.inv_mul
doublingGamma_eq_Gamma πŸ“–mathematicalReal
instLT
instZero
doublingGamma
Gamma
β€”eq_Gamma_of_log_convex
doublingGamma_log_convex_Ioi
doublingGamma_add_one
LT.lt.ne'
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Gamma_pos_of_pos
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_pos
rpow_pos_of_pos
sqrt_pos_of_pos
pi_pos
doublingGamma_one
doublingGamma_log_convex_Ioi πŸ“–mathematicalβ€”ConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
instPreorder
instZero
log
doublingGamma
β€”ConvexOn.congr
Nat.instAtLeastTwoHAddOfNat
ConvexOn.add_const
instIsOrderedAddMonoid
ConvexOn.add
Algebra.to_smulCommClass
zero_div
Set.preimage_const_mul_Ioiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
one_half_pos
smul_eq_mul
mul_comm
mul_one_div
ConvexOn.comp_affineMap
convexOn_log_Gamma
ConvexOn.subset
Set.preimage_comp
Set.preimage_add_const_Ioi
zero_sub
neg_div
div_self
LT.lt.ne'
Set.Ioi_subset_Ioi
LT.lt.le
neg_one_lt_zero
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
convex_Ioi
instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
ConvexOn.smul
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
log_pos
one_lt_two
convexOn_id
Set.EqOn.symm
log_doublingGamma_eq
doublingGamma_one πŸ“–mathematicalβ€”doublingGamma
Real
instOne
β€”Gamma_one_half_eq
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
sub_self
Gamma_one
mul_one
rpow_zero
div_self
sqrt_ne_zero'
pi_pos
eq_Gamma_of_log_convex πŸ“–mathematicalConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
instPreorder
instZero
log
instAdd
instOne
instMul
instLT
Set.EqOn
Gamma
β€”BohrMollerup.tendsto_logGammaSeq
log_mul
LT.lt.ne'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
sub_zero
log_one
BohrMollerup.tendsto_log_gamma
log_injOn_pos
Gamma_pos_of_pos
exists_isMinOn_Gamma_Ioi πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioo
instPreorder
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
IsMinOn
Gamma
Set.Ioi
instZero
β€”Nat.instAtLeastTwoHAddOfNat
IsCompact.exists_isMinOn
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Set.nonempty_Icc
one_le_two
instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
ContinuousOn.mono
DifferentiableOn.continuousOn
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableOn_Gamma_Ioi
Gamma_one
Gamma_ofNat_eq_factorial
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isRat_le_true
instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNNRat.to_isRat
LE.le.trans
LT.lt.le
StrictAntiOn.antitoneOn
Gamma_strictAntiOn_Ioc
NeZero.charZero_one
StrictMonoOn.monotoneOn
Gamma_strictMonoOn_Ici
log_doublingGamma_eq πŸ“–mathematicalβ€”Set.EqOn
Real
log
doublingGamma
instSub
instAdd
Gamma
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
instMul
sqrt
pi
Set.Ioi
instPreorder
instZero
β€”sqrt_ne_zero'
pi_pos
Nat.instAtLeastTwoHAddOfNat
LT.lt.ne'
Gamma_pos_of_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
two_pos
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_half_pos
rpow_pos_of_pos
doublingGamma.eq_1
log_div
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
log_mul
log_rpow
two_ne_zero
CharZero.NeZero.two
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.nnrat_rawCast
add_zero
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_mul
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.RingNF.add_assoc_rev

Real.BohrMollerup

Definitions

NameCategoryTheorems
logGammaSeq πŸ“–CompOp
6 mathmath: le_logGammaSeq, tendsto_logGammaSeq, logGammaSeq_add_one, tendsto_logGammaSeq_of_le_one, ge_logGammaSeq, tendsto_log_gamma

Theorems

NameKindAssumesProvesValidatesDepends On
f_add_nat_eq πŸ“–mathematicalReal
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instZero
Real.instNatCast
Finset.sum
Real.instAddCommMonoid
Finset.range
β€”CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
add_zero
Nat.cast_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Finset.range_add_one
Finset.sum_insert
Finset.notMem_range_self
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
f_add_nat_ge πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instLE
Real.instNatCast
Real.instMul
Real.instSub
β€”Nat.cast_one
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_lt
Real.instZeroLEOneClass
RCLike.charZero_rclike
convexOn_iff_slope_mono_adjacent
Real.instIsStrictOrderedRing
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
eq_sub_iff_add_eq
sub_add_cancel
add_comm
mul_comm
le_sub_iff_add_le
sub_sub_cancel
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
div_one
add_sub_cancel_left
f_add_nat_le πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instLE
Real.instNatCast
Real.instMul
β€”Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
LT.lt.le
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
f_nat_eq πŸ“–mathematicalReal
Real.instAdd
Real.instOne
Real.log
Real.instNatCast
Nat.factorial
β€”Nat.le_induction
Nat.cast_one
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Real.log_one
add_zero
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
Nat.cast_add
add_assoc
Real.log_mul
Nat.cast_ne_zero
RCLike.charZero_rclike
Nat.factorial_ne_zero
LT.lt.ne'
Nat.cast_mul
Nat.factorial_succ
mul_comm
ge_logGammaSeq πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instLE
logGammaSeq
β€”add_sub_assoc
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
f_add_nat_eq
add_comm
le_trans
le_of_eq
f_nat_eq
Nat.cast_add_one
add_sub_cancel_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
f_add_nat_ge
le_logGammaSeq πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instLE
Real.instSub
Real.instMul
Real.instNatCast
logGammaSeq
β€”logGammaSeq.eq_1
add_sub_assoc
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
f_add_nat_eq
add_comm
LE.le.trans
f_add_nat_le
le_of_eq
f_nat_eq
Nat.cast_add_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
logGammaSeq_add_one πŸ“–mathematicalβ€”logGammaSeq
Real
Real.instAdd
Real.instOne
Real.instSub
Real.log
Real.instMul
Real.instNatCast
β€”Finset.sum_range_succ'
Nat.cast_zero
add_zero
Nat.cast_mul
Real.log_mul
Nat.cast_ne_zero
RCLike.charZero_rclike
Nat.factorial_ne_zero
Finset.sum_congr
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
Nat.cast_add_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
tendsto_logGammaSeq πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Filter.Tendsto
logGammaSeq
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
β€”Nat.cast_zero
zero_add
tendsto_logGammaSeq_of_le_one
Filter.Eventually.mp
Filter.eventually_ge_atTop
Filter.Eventually.of_forall
logGammaSeq_add_one
sub_add_cancel
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Filter.Tendsto.comp
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Filter.Tendsto.congr'
LE.le.trans_lt
Nat.cast_nonneg
Real.instIsOrderedRing
lt_sub_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_succ
sub_le_iff_le_add
tendsto_const_nhds
Filter.tendsto_add_atTop_nat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
Real.tendsto_log_nat_add_one_sub_log
Real.instIsStrictOrderedRing
lt_or_ge
Nat.ceil_eq_zero
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
Nat.ceil_lt_add_one
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.le_ceil
tendsto_logGammaSeq_of_le_one πŸ“–mathematicalConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.instAdd
Real.instOne
Real.log
Real.instLT
Real.instLE
Filter.Tendsto
logGammaSeq
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
β€”tendsto_of_tendsto_of_tendsto_of_le_of_le'
instOrderTopologyReal
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_zero
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
tendsto_const_nhds
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.tendsto_log_nat_add_one_sub_log
Filter.univ_mem'
sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
le_logGammaSeq
Filter.mp_mem
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
le_sub_iff_add_le'
ge_logGammaSeq
tendsto_log_gamma πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
logGammaSeq
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.log
Real.Gamma
β€”Real.Gamma_one
Real.log_one
sub_zero
tendsto_logGammaSeq
Real.convexOn_log_Gamma
Real.Gamma_add_one
LT.lt.ne'
Real.log_mul
Real.Gamma_pos_of_pos
add_comm

---

← Back to Index