Documentation Verification Report

Deligne

📁 Source: Mathlib/Analysis/SpecialFunctions/Gamma/Deligne.lean

Statistics

MetricCount
DefinitionsGammaℂ, Gammaℝ
2
TheoremsGammaℂ_add_one, Gammaℂ_def, Gammaℂ_one, Gammaℝ_add_two, Gammaℝ_def, Gammaℝ_div_Gammaℝ_one_sub, Gammaℝ_eq_zero_iff, Gammaℝ_mul_Gammaℝ_add_one, Gammaℝ_ne_zero_of_re_pos, Gammaℝ_one, Gammaℝ_one_sub_mul_Gammaℝ_one_add, Gammaℝ_residue_zero, differentiable_Gammaℝ_inv, inv_Gammaℝ_one_sub, inv_Gammaℝ_two_sub
15
Total17

Complex

Definitions

NameCategoryTheorems
Gammaℂ 📖CompOp
10 mathmath: HurwitzZeta.cosZeta_two_mul_nat', hasDerivAt_Gammaℂ_one, HurwitzZeta.sinZeta_two_mul_nat_add_one', Gammaℂ_def, Gammaℂ_add_one, Gammaℝ_div_Gammaℝ_one_sub, inv_Gammaℝ_one_sub, inv_Gammaℝ_two_sub, Gammaℂ_one, Gammaℝ_mul_Gammaℝ_add_one
Gammaℝ 📖CompOp
33 mathmath: hasSum_mellin_pi_mul_sq', HurwitzZeta.differentiableAt_hurwitzZetaEven_sub_one_div, HurwitzZeta.differentiableAt_hurwitzZeta_sub_one_div, Gammaℝ_def, HurwitzZeta.hurwitzZetaEven_def_of_ne_or_ne, hasDerivAt_Gammaℝ_one, ZMod.LFunction_eq_completed_div_gammaFactor_even, HurwitzZeta.hasSum_nat_completedCosZeta, ZetaAsymptotics.tendsto_Gamma_term_aux, Gammaℝ_eq_zero_iff, ZetaAsymptotics.tendsto_riemannZeta_sub_one_div_Gammaℝ, ZMod.LFunction_eq_completed_div_gammaFactor_odd, differentiable_Gammaℝ_inv, HurwitzZeta.hasSum_int_completedHurwitzZetaOdd, DirichletCharacter.Even.gammaFactor_def, HurwitzZeta.hasSum_nat_completedSinZeta, Gammaℝ_one, DirichletCharacter.Odd.gammaFactor_def, HurwitzZeta.differentiableAt_update_of_residue, Gammaℝ_residue_zero, Gammaℝ_one_sub_mul_Gammaℝ_one_add, Gammaℝ_add_two, Gammaℝ_div_Gammaℝ_one_sub, riemannZeta_def_of_ne_zero, HurwitzZeta.tendsto_hurwitzZeta_sub_one_div_nhds_one, inv_Gammaℝ_one_sub, HurwitzZeta.hasSum_int_completedCosZeta, HurwitzZeta.hasSum_int_completedSinZeta, HurwitzZeta.hasSum_int_completedHurwitzZetaEven, inv_Gammaℝ_two_sub, Gammaℝ_mul_Gammaℝ_add_one, hasSum_mellin_pi_mul_sq, HurwitzZeta.tendsto_hurwitzZetaEven_sub_one_div_nhds_one

Theorems

NameKindAssumesProvesValidatesDepends On
Gammaℂ_add_one 📖mathematicalGammaℂ
Complex
instAdd
instOne
DivInvMonoid.toDiv
instDivInvMonoid
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
Nat.instAtLeastTwoHAddOfNat
Gammaℂ_def
Gamma_add_one
neg_add
cpow_add
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
two_ne_zero
CharZero.NeZero.two
instCharZero
ofReal_ne_zero
Real.pi_ne_zero
cpow_neg_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Gammaℂ_def 📖mathematicalGammaℂ
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instPow
ofReal
Real.pi
instNeg
Gamma
Gammaℂ_one 📖mathematicalGammaℂ
Complex
instOne
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
Nat.instAtLeastTwoHAddOfNat
Gammaℂ_def
cpow_neg_one
Gamma_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Nat.cast_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Gammaℝ_add_two 📖mathematicalGammaℝ
Complex
instAdd
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
instMul
ofReal
Real.pi
Nat.instAtLeastTwoHAddOfNat
Gammaℝ_def
neg_div
add_div
neg_add
div_self
two_ne_zero
CharZero.NeZero.two
instCharZero
Gamma_add_one
div_ne_zero
cpow_add
ofReal_ne_zero
Real.pi_ne_zero
cpow_neg_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Gammaℝ_def 📖mathematicalGammaℝ
Complex
instMul
instPow
ofReal
Real.pi
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Gamma
Gammaℝ_div_Gammaℝ_one_sub 📖mathematicalComplex
DivInvMonoid.toDiv
instDivInvMonoid
Gammaℝ
instSub
instOne
instMul
Gammaℂ
cos
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
add_comm
mul_comm
div_div
mul_div_cancel_right₀
EuclideanDomain.toMulDivCancelClass
Gammaℝ_one_sub_mul_Gammaℝ_one_add
Gammaℝ_mul_Gammaℝ_add_one
Gammaℂ_def
div_eq_mul_inv
inv_inv
Gammaℝ_eq_zero_iff 📖mathematicalGammaℝ
Complex
instZero
instNeg
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
mul_comm
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
div_eq_iff
two_ne_zero'
CharZero.NeZero.two
instCharZero
neg_mul
MulZeroClass.zero_mul
Gammaℝ_mul_Gammaℝ_add_one 📖mathematicalComplex
instMul
Gammaℝ
instAdd
instOne
Gammaℂ
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
cpow_add
ofReal_ne_zero
Real.pi_ne_zero
Gamma_mul_Gamma_add_half
Real.sqrt_eq_rpow
ofReal_cpow
LT.lt.le
Real.pi_pos
ofReal_div
ofReal_one
ofReal_ofNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
sub_eq_add_neg
two_ne_zero
CharZero.NeZero.two
cpow_one
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
mul_cpow_ofReal_nonneg
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Gammaℝ_ne_zero_of_re_pos 📖Real
Real.instLT
Real.instZero
re
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
instCharZero
Gamma_ne_zero_of_re_pos
div_ofNat_re
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Gammaℝ_one 📖mathematicalGammaℝ
Complex
instOne
Nat.instAtLeastTwoHAddOfNat
Gammaℝ_def
Gamma_one_half_eq
neg_div
one_div
cpow_neg
inv_mul_cancel₀
instCharZero
Gammaℝ_one_sub_mul_Gammaℝ_one_add 📖mathematicalComplex
instMul
Gammaℝ
instSub
instOne
instAdd
instInv
cos
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.nnrat_rawCast
add_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_congr
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isRat_add
Gamma_mul_Gamma_one_sub
cpow_one
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNNRat.to_isNat
cpow_add
ofReal_ne_zero
Real.pi_ne_zero
sin_pi_div_two_sub
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.inv_congr
cpow_zero
one_mul
Gammaℝ_residue_zero 📖mathematicalFilter.Tendsto
Complex
instMul
Gammaℝ
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
Filter.Tendsto.comp
tendsto_self_mul_Gamma_nhds_zero
tendsto_nhdsWithin_iff
zero_div
Filter.Tendsto.mono_left
Filter.Tendsto.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Filter.tendsto_id
nhdsWithin_le_nhds
Filter.eventually_of_mem
self_mem_nhdsWithin
div_ne_zero
two_ne_zero
CharZero.NeZero.two
instCharZero
neg_zero
cpow_zero
mul_one
ContinuousAt.tendsto
ContinuousAt.mul
continuousAt_const
ContinuousAt.comp
continuousAt_const_cpow
ofReal_ne_zero
Real.pi_ne_zero
ContinuousAt.comp'
Continuous.continuousAt
Continuous.div_const
continuous_id'
ContinuousAt.neg
IsTopologicalRing.toContinuousNeg
continuousAt_id'
Gammaℝ.eq_1
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.rat_rawCast_neg
Mathlib.Tactic.RingNF.int_rawCast_neg
add_zero
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Filter.Tendsto.mul
differentiable_Gammaℝ_inv 📖mathematicalDifferentiable
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instInv
Gammaℝ
Gammaℝ.eq_1
mul_inv
Differentiable.mul
DifferentiableAt.inv
DifferentiableAt.const_cpow
Nat.instAtLeastTwoHAddOfNat
DifferentiableAt.div_const
DifferentiableAt.neg
differentiableAt_id
ofReal_ne_zero
Real.pi_ne_zero
instCharZero
Differentiable.comp
differentiable_one_div_Gamma
Differentiable.div_const
differentiable_id
inv_Gammaℝ_one_sub 📖mathematicalComplex
instInv
Gammaℝ
instSub
instOne
instMul
Gammaℂ
cos
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Nat.instAtLeastTwoHAddOfNat
Gammaℝ_eq_zero_iff
Nat.cast_mul
neg_add_rev
Nat.cast_add
Nat.cast_one
Gammaℝ_div_Gammaℝ_one_sub
div_eq_mul_inv
div_right_comm
div_self
one_div
inv_Gammaℝ_two_sub 📖mathematicalComplex
instInv
Gammaℝ
instSub
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
Gammaℂ
sin
DivInvMonoid.toDiv
instDivInvMonoid
ofReal
Real.pi
instAdd
instOne
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Gammaℝ_one
Gammaℝ.eq_1
neg_div
add_self_div_two
CharZero.NeZero.two
instCharZero
Gamma_one
Gammaℂ_one
mul_one
sin_pi_div_two
cpow_neg_one
inv_inv
div_mul_cancel₀
ofReal_ne_zero
Real.pi_ne_zero
inv_one
Nat.cast_zero
neg_zero
sub_ne_zero
sub_eq_iff_eq_add
Nat.cast_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.isNat_add
inv_Gammaℝ_one_sub
sub_add_cancel
Gammaℂ_add_one
Gammaℝ_add_two
mul_sub
sub_div
cos_sub_pi_div_two
mul_div_assoc
mul_inv
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Meta.NormNum.isNat_eq_false
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul

---

← Back to Index