Gammaℝ 📖 | CompOp | 33 mathmath: hasSum_mellin_pi_mul_sq', HurwitzZeta.differentiableAt_hurwitzZetaEven_sub_one_div, HurwitzZeta.differentiableAt_hurwitzZeta_sub_one_div, Gammaℝ_def, HurwitzZeta.hurwitzZetaEven_def_of_ne_or_ne, hasDerivAt_Gammaℝ_one, ZMod.LFunction_eq_completed_div_gammaFactor_even, HurwitzZeta.hasSum_nat_completedCosZeta, ZetaAsymptotics.tendsto_Gamma_term_aux, Gammaℝ_eq_zero_iff, ZetaAsymptotics.tendsto_riemannZeta_sub_one_div_Gammaℝ, ZMod.LFunction_eq_completed_div_gammaFactor_odd, differentiable_Gammaℝ_inv, HurwitzZeta.hasSum_int_completedHurwitzZetaOdd, DirichletCharacter.Even.gammaFactor_def, HurwitzZeta.hasSum_nat_completedSinZeta, Gammaℝ_one, DirichletCharacter.Odd.gammaFactor_def, HurwitzZeta.differentiableAt_update_of_residue, Gammaℝ_residue_zero, Gammaℝ_one_sub_mul_Gammaℝ_one_add, Gammaℝ_add_two, Gammaℝ_div_Gammaℝ_one_sub, riemannZeta_def_of_ne_zero, HurwitzZeta.tendsto_hurwitzZeta_sub_one_div_nhds_one, inv_Gammaℝ_one_sub, HurwitzZeta.hasSum_int_completedCosZeta, HurwitzZeta.hasSum_int_completedSinZeta, HurwitzZeta.hasSum_int_completedHurwitzZetaEven, inv_Gammaℝ_two_sub, Gammaℝ_mul_Gammaℝ_add_one, hasSum_mellin_pi_mul_sq, HurwitzZeta.tendsto_hurwitzZetaEven_sub_one_div_nhds_one
|