Documentation Verification Report

Deriv

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Gamma/Deriv.lean

Statistics

MetricCount
Definitions0
TheoremsGammaIntegral_eq_mellin, continuousAt_Gamma, continuousAt_Gamma_one, deriv_Gamma_add_one, differentiableAt_Gamma, differentiableAt_GammaAux, differentiableAt_Gamma_one, hasDerivAt_GammaIntegral, not_continuousAt_Gamma_neg_nat, not_continuousAt_Gamma_zero, not_differentiableAt_Gamma_neg_nat, not_differentiableAt_Gamma_zero, tendsto_self_mul_Gamma_nhds_zero, differentiableAt_Gamma, differentiableOn_Gamma_Ioi
15
Total15

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
GammaIntegral_eq_mellin πŸ“–mathematicalβ€”GammaIntegral
mellin
Complex
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
ofReal
Real.exp
Real
Real.instNeg
β€”mul_comm
continuousAt_Gamma πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
β€”DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_Gamma
continuousAt_Gamma_one πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instOne
β€”DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_Gamma_one
deriv_Gamma_add_one πŸ“–mathematicalβ€”deriv
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instAdd
instOne
instMul
β€”sub_neg_eq_add
neg_sub'
Nat.cast_one
Nat.cast_sub
Nat.cast_ne_zero
instCharZero
neg_ne_zero
deriv_zero_of_not_differentiableAt
not_differentiableAt_Gamma_neg_nat
Gamma_neg_nat_eq_zero
zero_add
MulZeroClass.mul_zero
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
HasDerivWithinAt.congr
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivWithinAt.congr_simp
one_mul
HasDerivWithinAt.mul
hasDerivWithinAt_id
HasDerivAt.hasDerivWithinAt
DifferentiableAt.hasDerivAt
differentiableAt_Gamma
Gamma_add_one
deriv_comp_add_const
HasDerivAt.deriv
HasDerivWithinAt.hasDerivAt
compl_singleton_mem_nhds
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
differentiableAt_Gamma πŸ“–mathematicalβ€”DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
β€”Real.instIsStrictOrderedRing
Nat.cast_one
Nat.lt_floor_add_one
DifferentiableAt.congr_of_eventuallyEq
differentiableAt_GammaAux
mem_nhds_iff
Set.Subset.rfl
Set.ext
Set.preimage.eq_1
Set.Ioi.eq_1
Set.mem_setOf_eq
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Continuous.isOpen_preimage
continuous_re
isOpen_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.eventuallyEq_of_mem
Gamma_eq_GammaAux
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
differentiableAt_GammaAux πŸ“–mathematicalReal
Real.instLT
Real.instSub
Real.instOne
re
Real.instNatCast
DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
GammaAux
β€”HasDerivAt.differentiableAt
hasDerivAt_GammaIntegral
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
add_re
one_re
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Nat.cast_succ
Mathlib.Tactic.Contrapose.contraposeβ‚„
Nat.cast_add
neg_add_rev
eq_sub_iff_add_eq
DifferentiableAt.div
DifferentiableAt.comp
differentiableAt_add_const_iff
differentiableAt_id
CharP.cast_eq_zero
CharP.ofCharZero
instCharZero
neg_zero
differentiableAt_Gamma_one πŸ“–mathematicalβ€”DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instOne
β€”differentiableAt_Gamma
Nat.cast_one
Int.cast_one
instCharZero
Int.instIsStrictOrderedRing
hasDerivAt_GammaIntegral πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
HasDerivAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
IsModuleTopology.toContinuousSMul
NontriviallyNormedField.toNormedField
instAdd
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsTopologicalSemiring.toIsModuleTopology
instSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
GammaIntegral
MeasureTheory.integral
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.Ioi
Real.instPreorder
instMul
instPow
ofReal
instSub
instOne
Real.log
Real.exp
Real.instNeg
β€”IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
GammaIntegral_eq_mellin
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mellin_hasDerivAt_of_isBigO_rpow
ContinuousOn.locallyIntegrableOn
BorelSpace.opensMeasurable
Real.borelSpace
Real.locallyFinite_volume
secondCountableTopologyEither_of_right
UniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
instProperSpace
Continuous.continuousOn
Continuous.comp
continuous_ofReal
Real.continuous_exp
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
measurableSet_Ioi
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Asymptotics.isBigO_norm_left
norm_real
neg_one_mul
Asymptotics.IsLittleO.isBigO
isLittleO_exp_neg_mul_rpow_atTop
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
neg_zero
Real.rpow_zero
Asymptotics.isBigO_const_of_tendsto
Real.exp_zero
Continuous.continuousWithinAt
one_ne_zero
not_continuousAt_Gamma_neg_nat πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instNeg
instNatCast
β€”Nat.cast_zero
neg_zero
not_continuousAt_Gamma_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
neg_add'
neg_ne_zero
Nat.cast_add_one_ne_zero
instCharZero
ContinuousWithinAt.continuousAt
ContinuousWithinAt.congr
ContinuousAt.continuousWithinAt
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousAt_id
Nat.cast_one
Nat.cast_add
Gamma_add_one
compl_singleton_mem_nhds
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
ContinuousAt.comp'
Continuous.continuousAt
continuous_sub_right
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
sub_add_cancel
not_continuousAt_Gamma_zero πŸ“–mathematicalβ€”ContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instZero
β€”Filter.Tendsto.not_tendsto
tendsto_self_mul_Gamma_nhds_zero
PerfectSpace.not_isolated
instPerfectSpace
Gamma_zero
MulZeroClass.mul_zero
instT2Space
NeZero.charZero_one
instCharZero
continuousAt_iff_punctured_nhds
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousAt_id
not_differentiableAt_Gamma_neg_nat πŸ“–mathematicalβ€”DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instNeg
instNatCast
β€”DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
not_continuousAt_Gamma_neg_nat
not_differentiableAt_Gamma_zero πŸ“–mathematicalβ€”DifferentiableAt
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Gamma
instZero
β€”DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
not_continuousAt_Gamma_zero
tendsto_self_mul_Gamma_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
Complex
instMul
Gamma
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
instOne
β€”zero_add
Gamma_one
tendsto_nhdsWithin_congr
Gamma_add_one
continuousAt_iff_punctured_nhds
ContinuousAt.comp'
Continuous.continuousAt
continuous_add_right
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing

Real

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableAt_Gamma πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
InnerProductSpace.toNormedSpace
instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Gamma
β€”HasDerivAt.differentiableAt
HasDerivAt.real_of_complex
DifferentiableAt.hasDerivAt
Complex.differentiableAt_Gamma
differentiableOn_Gamma_Ioi πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
InnerProductSpace.toNormedSpace
instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Gamma
Set.Ioi
instPreorder
instZero
β€”DifferentiableAt.differentiableWithinAt
differentiableAt_Gamma
Set.mem_Ioi
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.sub_neg_of_lt

---

← Back to Index