Documentation Verification Report

Digamma

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Gamma/Digamma.lean

Statistics

MetricCount
Definitionsdigamma
1
Theoremsdigamma_apply_add_one, digamma_def, digamma_one, digamma_one_half, digamma_zero, meromorphic_digamma
6
Total7

Complex

Definitions

NameCategoryTheorems
digamma πŸ“–CompOp
6 mathmath: meromorphic_digamma, digamma_apply_add_one, digamma_one_half, digamma_zero, digamma_def, digamma_one

Theorems

NameKindAssumesProvesValidatesDepends On
digamma_apply_add_one πŸ“–mathematicalβ€”digamma
Complex
instAdd
instOne
instInv
β€”CharP.cast_eq_zero
CharP.ofCharZero
instCharZero
neg_zero
digamma_def
logDeriv_apply
deriv_Gamma_add_one
Gamma_add_one
add_div
div_mul_cancel_rightβ‚€
Gamma_ne_zero
mul_div_mul_left
add_comm
digamma_def πŸ“–mathematicalβ€”digamma
logDeriv
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAlgebra.id
NontriviallyNormedField.toNormedField
Gamma
β€”β€”
digamma_one πŸ“–mathematicalβ€”digamma
Complex
instOne
instNeg
ofReal
Real.eulerMascheroniConstant
β€”digamma_def
logDeriv_apply
HasDerivAt.deriv
hasDerivAt_Gamma_one
Gamma_one
div_one
digamma_one_half πŸ“–mathematicalβ€”digamma
Complex
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
instMul
instNeg
log
ofReal
Real.eulerMascheroniConstant
β€”Nat.instAtLeastTwoHAddOfNat
digamma_def
logDeriv_apply
HasDerivAt.deriv
hasDerivAt_Gamma_one_half
add_comm
Gamma_one_half_eq
neg_mul
mul_neg
neg_add'
Real.sqrt_eq_rpow
ofReal_cpow
Real.pi_nonneg
one_div
ofReal_inv
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
instCharZero
digamma_zero πŸ“–mathematicalβ€”digamma
Complex
instZero
β€”logDeriv_eq_zero_of_not_differentiableAt
not_differentiableAt_Gamma_zero
meromorphic_digamma πŸ“–mathematicalβ€”Meromorphic
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
digamma
β€”Meromorphic.logDeriv
instCompleteSpace
Meromorphic.Gamma

---

← Back to Index