Documentation Verification Report

PoissonSummation

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Gaussian/PoissonSummation.lean

Statistics

MetricCount
Definitions0
Theoremstsum_exp_neg_mul_int_sq, tsum_exp_neg_quadratic, tsum_exp_neg_mul_int_sq, cexp_neg_quadratic_isLittleO_abs_rpow_cocompact, cexp_neg_quadratic_isLittleO_rpow_atTop, isLittleO_exp_neg_mul_sq_cocompact, rexp_neg_quadratic_isLittleO_rpow_atTop, tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact
8
Total8

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
tsum_exp_neg_mul_int_sq πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
exp
instMul
instNeg
ofReal
Real.pi
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instIntCast
SummationFilter.unconditional
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
tsum_exp_neg_quadratic
tsum_exp_neg_quadratic πŸ“–mathematicalReal
Real.instLT
Real.instZero
re
tsum
Complex
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
instNormedAddCommGroup
exp
instAdd
instMul
instNeg
ofReal
Real.pi
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instIntCast
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
SummationFilter.unconditional
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
I
β€”Nat.instAtLeastTwoHAddOfNat
Continuous.comp
continuous_exp
Continuous.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.mul
IsTopologicalSemiring.toContinuousMul
continuous_const
Continuous.pow
continuous_ofReal
Real.borelSpace
FiniteDimensional.rclike_to_real
fourier_gaussian_pi'
re_ofReal_mul
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_pos
div_eq_mul_inv
inv_re
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
normSq_pos
Mathlib.Tactic.Contrapose.contrapose₃
zero_re
le_refl
Asymptotics.IsLittleO.isBigO
cexp_neg_quadratic_isLittleO_abs_rpow_cocompact
neg_mul
neg_re
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.mul_assoc_rev
mul_one
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.RingNF.add_assoc_rev
I_sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
exp_add
mul_assoc
mul_comm
Asymptotics.IsBigO.const_mul_left
neg_div
zero_add
tsum_mul_left
instT2Space
fourier_eval_zero
Real.tsum_eq_tsum_fourier_of_rpow_decay
one_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tsum_exp_neg_mul_int_sq πŸ“–mathematicalReal
instLT
instZero
tsum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
exp
instMul
instNeg
pi
Monoid.toNatPow
instMonoid
instIntCast
SummationFilter.unconditional
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instPow
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_tsum
Complex.ofReal_exp
Complex.ofReal_mul
Complex.ofReal_neg
Complex.ofReal_pow
Complex.ofReal_div
Complex.ofReal_cpow
LT.lt.le
MulZeroClass.mul_zero
MulZeroClass.zero_mul
add_zero
Complex.tsum_exp_neg_quadratic
Complex.ofReal_re

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cexp_neg_quadratic_isLittleO_abs_rpow_cocompact πŸ“–mathematicalReal
Real.instLT
Complex.re
Real.instZero
Asymptotics.IsLittleO
Complex
Complex.instNorm
Real.norm
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex.exp
Complex.instAdd
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.ofReal
Real.instPow
abs
Real.lattice
Real.instAddGroup
β€”cocompact_eq_atBot_atTop
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instNoMinOrderOfNontrivial
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Asymptotics.isLittleO_sup
Asymptotics.IsLittleO.congr'
Asymptotics.IsLittleO.comp_tendsto
cexp_neg_quadratic_isLittleO_rpow_atTop
Filter.tendsto_neg_atBot_atTop
Filter.Eventually.of_forall
neg_mul
Complex.ofReal_neg
neg_sq
mul_neg
neg_neg
Filter.Eventually.mp
Filter.eventually_lt_atBot
instNoBotOrderOfNoMinOrder
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
Filter.EventuallyEq.rfl
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
abs_of_pos
cexp_neg_quadratic_isLittleO_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Complex.re
Real.instZero
Asymptotics.IsLittleO
Complex
Complex.instNorm
Real.norm
Filter.atTop
Real.instPreorder
Complex.exp
Complex.instAdd
Complex.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.ofReal
Real.instPow
β€”Asymptotics.IsLittleO.of_norm_left
Complex.norm_exp
mul_comm
Complex.re_ofReal_mul
rexp_neg_quadratic_isLittleO_rpow_atTop
isLittleO_exp_neg_mul_sq_cocompact πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.re
Asymptotics.IsLittleO
Complex
Complex.instNorm
Real.norm
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Complex.exp
Complex.instMul
Complex.instNeg
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Complex.ofReal
Real.instPow
abs
Real.lattice
Real.instAddGroup
β€”MulZeroClass.zero_mul
add_zero
cexp_neg_quadratic_isLittleO_abs_rpow_cocompact
Complex.neg_re
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
rexp_neg_quadratic_isLittleO_rpow_atTop πŸ“–mathematicalReal
Real.instLT
Real.instZero
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Real.instPreorder
Real.exp
Real.instAdd
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instPow
β€”Real.isLittleO_exp_comp_exp_comp
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Filter.Tendsto.atTop_mul_atTopβ‚€
Real.instIsOrderedRing
Filter.tendsto_id
Filter.tendsto_atTop_add_const_right
Real.instIsOrderedAddMonoid
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
neg_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Asymptotics.IsLittleO.trans
neg_one_mul
isLittleO_exp_neg_mul_rpow_atTop
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_rpow_abs_mul_exp_neg_mul_sq_cocompact πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Real.instMul
Real.instPow
abs
Real.lattice
Real.instAddGroup
Real.exp
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Filter.cocompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
nhds
β€”sq_abs
cocompact_eq_atBot_atTop
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
instNoMinOrderOfNontrivial
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Filter.comap_abs_atTop
Filter.tendsto_comap'_iff
Filter.mem_atTop_sets
instIsDirectedOrder
Real.instArchimedean
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Asymptotics.IsLittleO.tendsto_zero_of_tendsto
Nat.instAtLeastTwoHAddOfNat
rpow_mul_exp_neg_mul_sq_isLittleO_exp_neg
Filter.Tendsto.comp
Real.tendsto_exp_atBot
Filter.Tendsto.const_mul_atTop_of_neg
Real.instIsStrictOrderedRing
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Filter.tendsto_id

---

← Back to Index