Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Integrals/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsintegral_const_on_unit_interval, integral_cos, integral_cos_mul_complex, integral_cos_pow, integral_cos_pow_aux, integral_cos_pow_three, integral_cos_sq, integral_cos_sq_sub_sin_sq, integral_cpow, integral_div_sq_add_sq, integral_exp, integral_exp_mul_I_eq_sin, integral_exp_mul_I_eq_sinc, integral_exp_mul_complex, integral_id, integral_inv, integral_inv_of_neg, integral_inv_of_pos, integral_inv_one_add_sq, integral_inv_sq_add_sq, integral_log, integral_log_from_zero, integral_log_from_zero_of_pos, integral_mul_cpow_one_add_sq, integral_mul_rpow_one_add_sq, integral_one, integral_one_div, integral_one_div_of_neg, integral_one_div_of_pos, integral_one_div_one_add_sq, integral_pow, integral_pow_abs_sub_uIoc, integral_rpow, integral_sin, integral_sin_mul_cos_sq, integral_sin_mul_cos₁, integral_sin_mul_cosβ‚‚, integral_sin_pow, integral_sin_pow_antitone, integral_sin_pow_aux, integral_sin_pow_even, integral_sin_pow_even_mul_cos_pow_even, integral_sin_pow_mul_cos_pow_odd, integral_sin_pow_odd, integral_sin_pow_odd_mul_cos_pow, integral_sin_pow_pos, integral_sin_pow_succ_le, integral_sin_pow_three, integral_sin_sq, integral_sin_sq_mul_cos, integral_sin_sq_mul_cos_sq, integral_sqrt_one_sub_sq, integral_zpow, inv_mul_integral_comp_add_div, inv_mul_integral_comp_div, inv_mul_integral_comp_div_add, inv_mul_integral_comp_div_sub, inv_mul_integral_comp_sub_div, mul_integral_comp_add_mul, mul_integral_comp_mul_add, mul_integral_comp_mul_left, mul_integral_comp_mul_right, mul_integral_comp_mul_sub, mul_integral_comp_sub_mul
64
Total64

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
integral_const_on_unit_interval πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instAdd
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”intervalIntegral.integral_const
Real.instCompleteSpace
add_sub_cancel_left
one_mul
integral_cos πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.sin
β€”intervalIntegral.integral_deriv_eq_sub'
Real.instCompleteSpace
Real.deriv_sin
Real.continuousOn_cos
integral_cos_mul_complex πŸ“–mathematicalβ€”intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.cos
Complex.instMul
Complex.ofReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Complex.instSub
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.sin
β€”intervalIntegral.integral_eq_sub_of_hasDerivAt
Complex.instCompleteSpace
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.hasDerivAt_sin
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
hasDerivAt_mul_const
HasDerivAt.comp
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.comp_ofReal
HasDerivAt.div_const
mul_comm
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
HasDerivAt.congr_simp
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.comp'
Complex.continuous_cos
Continuous.fun_mul
continuous_const
continuous_id'
Complex.continuous_ofReal
integral_cos_pow πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instMul
Real.sin
Real.instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg'
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
eq_sub_iff_add_eq
integral_cos_pow_aux
integral_cos_pow_aux πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instAdd
Real.instMul
Real.sin
Real.instNatCast
Real.instOne
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
HasDerivAt.congr_simp
neg_mul
mul_right_comm
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_neg
HasDerivAt.pow
Real.hasDerivAt_cos
Real.hasDerivAt_sin
intervalIntegral.integral_mul_deriv_eq_deriv_mul
Real.instCompleteSpace
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
Continuous.prodMk
Continuous.fun_mul
continuous_const
continuous_id'
Real.continuous_sin
Continuous.pow
Real.continuous_cos
pow_succ
Nat.cast_add
Nat.cast_one
intervalIntegral.integral_neg
intervalIntegral.integral_const_mul
sub_neg_eq_add
sq
Real.sin_sq
sub_mul
one_mul
add_comm
intervalIntegral.integral_sub
mul_sub
add_sub_assoc
integral_cos_pow_three πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.sin
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”integral_sin_pow_mul_cos_pow_odd
Mathlib.Meta.NormNum.instAtLeastTwo
pow_zero
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
one_mul
pow_one
intervalIntegral.integral_sub
Real.locallyFinite_volume
Nat.cast_one
enorm_one
NormedDivisionRing.to_normOneClass
intervalIntegral.integral_const
Real.instCompleteSpace
mul_one
integral_pow
Mathlib.Meta.NormNum.isNat_natCast
integral_cos_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instAdd
Real.instMul
Real.sin
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
integral_cos_pow
zero_add
pow_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
one_div
pow_zero
intervalIntegral.integral_const
Real.instCompleteSpace
mul_one
add_sub_assoc
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
integral_cos_sq_sub_sin_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instSub
Monoid.toNatPow
Real.instMonoid
Real.cos
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
β€”sq
sub_eq_add_neg
neg_mul_eq_mul_neg
intervalIntegral.integral_deriv_mul_eq_sub
Real.instCompleteSpace
Real.hasDerivAt_sin
Real.hasDerivAt_cos
ContinuousOn.intervalIntegrable
Real.locallyFinite_volume
Real.continuousOn_cos
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
Real.continuousOn_sin
integral_cpow πŸ“–mathematicalReal
Real.instLT
Real.instNeg
Real.instOne
Complex.re
Set
Set.instMembership
Set.uIcc
Real.lattice
Real.instZero
intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instPow
Complex.ofReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instSub
Complex.instAdd
Complex.instOne
β€”sub_div
Complex.add_re
Complex.one_re
Complex.zero_re
add_eq_zero_iff_eq_neg
LT.lt.ne'
intervalIntegral.integral_eq_sub_of_hasDerivAt
Complex.instCompleteSpace
hasDerivAt_ofReal_cpow_const'
Mathlib.Tactic.Contrapose.contraposeβ‚„
intervalIntegral.intervalIntegrable_cpow
Real.locallyFinite_volume
intervalIntegral.integral_eq_sub_of_hasDeriv_right
Continuous.continuousOn
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Complex.continuous_ofReal_cpow_const
neg_lt_iff_pos_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
HasDerivAt.hasDerivWithinAt
le_total
LT.lt.ne
max_eq_left
min_eq_left
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
intervalIntegral.intervalIntegrable_cpow'
intervalIntegral.integral_add_adjacent_intervals
intervalIntegral.integral_symm
Complex.zero_cpow
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
integral_div_sq_add_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.arctan
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
zero_pow
Nat.instCharZero
zero_add
MulZeroClass.zero_mul
intervalIntegral.integral_zero
div_zero
Real.arctan_zero
sub_self
intervalIntegral.integral_const_mul
integral_inv_sq_add_sq
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
integral_exp πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.exp
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
β€”intervalIntegral.integral_deriv_eq_sub'
Real.instCompleteSpace
Real.deriv_exp
Real.differentiableAt_exp
Real.continuousOn_exp
integral_exp_mul_I_eq_sin πŸ“–mathematicalβ€”intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.exp
Complex.instMul
Complex.ofReal
Complex.I
Real.instNeg
MeasureTheory.MeasureSpace.volume
Real.measureSpace
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sin
β€”Nat.instAtLeastTwoHAddOfNat
mul_comm
integral_exp_mul_complex
Complex.ofReal_neg
mul_neg
Complex.div_I
Complex.exp_mul_I
Complex.cos_neg
Complex.sin_neg
add_sub_add_left_eq_sub
Complex.ofReal_sin
sub_mul
mul_assoc
two_mul
Complex.I_mul_I
mul_one
neg_neg
neg_sub
sub_neg_eq_add
integral_exp_mul_I_eq_sinc πŸ“–mathematicalβ€”intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.exp
Complex.instMul
Complex.ofReal
Complex.I
Real.instNeg
MeasureTheory.MeasureSpace.volume
Real.measureSpace
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sinc
β€”Nat.instAtLeastTwoHAddOfNat
integral_exp_mul_I_eq_sin
Real.sin_zero
MulZeroClass.mul_zero
Real.sinc_zero
mul_one
Real.sinc_of_ne_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
integral_exp_mul_complex πŸ“–mathematicalβ€”intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.exp
Complex.instMul
Complex.ofReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instSub
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
HasDerivAt.div_const
HasDerivAt.comp
Complex.hasDerivAt_exp
HasDerivAt.congr_simp
mul_one
HasDerivAt.comp_ofReal
HasDerivAt.const_mul
hasDerivAt_id
intervalIntegral.integral_deriv_eq_sub'
Complex.instCompleteSpace
HasDerivAt.deriv
HasDerivAt.differentiableAt
ContinuousOn.cexp
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuousOn_const
Continuous.continuousOn
Complex.continuous_ofReal
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Complex.instCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
integral_id πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”integral_pow
Mathlib.Meta.NormNum.instAtLeastTwo
pow_one
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_one
integral_inv πŸ“–mathematicalReal
Set
Set.instMembership
Set.uIcc
Real.lattice
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instInv
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”intervalIntegral.integral_deriv_eq_sub'
Real.instCompleteSpace
Real.deriv_log'
Real.differentiableAt_log
ContinuousOn.mono
continuousOn_invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
Set.subset_compl_singleton_iff
Real.log_div
Set.right_mem_uIcc
Set.left_mem_uIcc
integral_inv_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instInv
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”integral_inv
Set.notMem_uIcc_of_gt
integral_inv_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instInv
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”integral_inv
Set.notMem_uIcc_of_lt
integral_inv_one_add_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instInv
Real.instAdd
Real.instOne
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.arctan
β€”integral_one_div_one_add_sq
integral_inv_sq_add_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instInv
Real.instAdd
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
Real.instSub
Real.arctan
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
intervalIntegral.integral_comp_div
intervalIntegral.integral_const_mul
integral_inv_one_add_sq
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
integral_log πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instAdd
Real.instSub
Real.instMul
β€”intervalIntegral.integral_add_adjacent_intervals
intervalIntegral.intervalIntegrable_log'
intervalIntegral.integral_symm
integral_log_from_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
integral_log_from_zero πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Real.instZero
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instMul
β€”lt_trichotomy
Real.log_neg_eq_log
intervalIntegral.integral_comp_neg
intervalIntegral.integral_symm
neg_zero
integral_log_from_zero_of_pos
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_mul
intervalIntegral.integral_same
Real.log_zero
MulZeroClass.mul_zero
sub_self
integral_log_from_zero_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instMul
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
intervalIntegral.integral_eq_sub_of_hasDerivAt_of_tendsto
Real.instCompleteSpace
intervalIntegral.intervalIntegrable_log'
HasDerivAt.congr_simp
add_sub_cancel_right
HasDerivAt.sub
Real.hasDerivAt_mul_log
LT.lt.ne
hasDerivAt_id
Real.rpow_one
mul_comm
sub_self
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
tendsto_log_mul_rpow_nhdsGT_zero
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_nhdsWithin_of_tendsto_nhds
Filter.tendsto_id
ContinuousAt.tendsto
ContinuousAt.comp'
ContinuousAt.sub
ContinuousAt.fst
continuousAt_id'
ContinuousAt.snd
Continuous.continuousAt
Continuous.prodMk
Real.continuous_mul_log
continuous_id'
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
add_zero
integral_mul_cpow_one_add_sq πŸ“–mathematicalβ€”intervalIntegral
Complex
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instMul
Complex.ofReal
Complex.instPow
Complex.instAdd
Complex.instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Complex.instSub
DivInvMonoid.toDiv
Complex.instDivInvMonoid
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
add_eq_zero_iff_eq_neg
intervalIntegral.integral_eq_sub_of_hasDerivAt
Complex.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
pow_one
HasDerivAt.const_add
hasDerivAt_pow
add_sub_cancel_right
mul_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Complex.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
HasDerivAt.div_const
HasDerivAt.cpow_const
hasDerivAt_id
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
HasDerivAt.comp_ofReal
HasDerivAt.comp
Nat.cast_one
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.mul
IsTopologicalSemiring.toContinuousMul
Complex.continuous_ofReal
Continuous.cpow
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
continuous_const
Continuous.comp'
Continuous.pow
continuous_id'
Complex.ofReal_mem_slitPlane
one_pos
integral_mul_rpow_one_add_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Real.instPow
Real.instAdd
Real.instOne
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.cast_one
Complex.ofReal_cpow
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_le_one
Real.instZeroLEOneClass
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Complex.ofReal_add
Complex.ofReal_pow
Complex.ofReal_one
Nat.instAtLeastTwoHAddOfNat
intervalIntegral.integral_ofReal
Complex.ofReal_mul
Complex.ofReal_sub
Complex.ofReal_div
integral_mul_cpow_one_add_sq
Complex.ofReal_neg
integral_one πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
β€”intervalIntegral.integral_const
Real.instCompleteSpace
mul_one
integral_one_div πŸ“–mathematicalReal
Set
Set.instMembership
Set.uIcc
Real.lattice
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
β€”one_div
integral_inv
integral_one_div_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
β€”one_div
integral_inv_of_neg
integral_one_div_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.log
β€”one_div
integral_inv_of_pos
integral_one_div_one_add_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instAdd
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.arctan
β€”intervalIntegral.integral_deriv_eq_sub'
Real.instCompleteSpace
Real.deriv_arctan
Real.differentiableAt_arctan
Continuous.continuousOn
Continuous.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_const
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
Continuous.pow
continuous_id'
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono
sub_eq_zero_of_eq
integral_pow πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instAdd
Real.instNatCast
Real.instOne
β€”zpow_natCast
integral_zpow
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
integral_pow_abs_sub_uIoc πŸ“–mathematicalβ€”MeasureTheory.integral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.measureSpace
MeasureTheory.Measure.restrict
MeasureTheory.MeasureSpace.volume
Set.uIoc
Real.linearOrder
Monoid.toNatPow
Real.instMonoid
abs
Real.lattice
Real.instAddGroup
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Real.instNatCast
Real.instOne
β€”le_or_gt
Set.uIoc_of_le
intervalIntegral.integral_of_le
intervalIntegral.integral_comp_sub_right
sub_self
intervalIntegral.integral_congr
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.uIcc_of_le
sub_nonneg
covariant_swap_add_of_covariant_add
integral_pow
zero_pow
sub_zero
Set.uIoc_of_ge
LT.lt.le
abs_of_nonpos
sub_nonpos
intervalIntegral.integral_comp_neg
neg_zero
neg_sub
abs_of_neg
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
integral_rpow πŸ“–mathematicalReal
Real.instLT
Real.instNeg
Real.instOne
Set
Set.instMembership
Set.uIcc
Real.lattice
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instPow
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instAdd
β€”Complex.ofReal_re
Complex.ofReal_one
Complex.ofReal_neg
integral_cpow
intervalIntegral.intervalIntegral_eq_integral_uIoc
Complex.re_ofReal_mul
integral_re
intervalIntegrable_iff
PseudoEMetricSpace.pseudoMetrizableSpace
intervalIntegral.intervalIntegrable_cpow'
intervalIntegral.intervalIntegrable_cpow
Real.locallyFinite_volume
Complex.ofReal_add
div_eq_inv_mul
integral_sin πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.cos
β€”intervalIntegral.integral_deriv_eq_sub'
Real.instCompleteSpace
deriv.fun_neg'
Real.deriv_cos'
neg_neg
Real.continuousOn_sin
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
integral_sin_mul_cos_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Real.sin
Monoid.toNatPow
Real.instMonoid
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”integral_sin_pow_odd_mul_cos_pow
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
pow_one
pow_zero
mul_one
integral_pow
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_one
integral_sin_mul_cos₁ πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
pow_one
MulZeroClass.mul_zero
zero_add
pow_zero
mul_one
integral_id
integral_sin_pow_mul_cos_pow_odd
integral_sin_mul_cosβ‚‚ πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
integral_sin_mul_cos₁
RCLike.charZero_rclike
MulZeroClass.mul_zero
zero_add
pow_one
pow_zero
mul_one
integral_id
integral_sin_pow_odd_mul_cos_pow
integral_sin_pow πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instMul
Real.cos
Real.instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg'
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
eq_sub_iff_add_eq
integral_sin_pow_aux
integral_sin_pow_antitone πŸ“–mathematicalβ€”Antitone
Real
Nat.instPreorder
Real.instPreorder
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.instZero
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”antitone_nat_of_succ_le
integral_sin_pow_succ_le
integral_sin_pow_aux πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instAdd
Real.instMul
Real.cos
Real.instNatCast
Real.instOne
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.congr_simp
mul_right_comm
HasDerivAt.pow
Real.hasDerivAt_sin
neg_neg
HasDerivAt.neg
Real.hasDerivAt_cos
intervalIntegral.integral_mul_deriv_eq_deriv_mul
Real.instCompleteSpace
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
Continuous.prodMk
Continuous.fun_mul
continuous_const
continuous_id'
Real.continuous_cos
Continuous.pow
Real.continuous_sin
pow_succ
mul_neg
sub_neg_eq_add
Nat.cast_add
Nat.cast_one
intervalIntegral.integral_neg
intervalIntegral.integral_const_mul
sq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Real.cos_sq'
sub_mul
one_mul
add_comm
intervalIntegral.integral_sub
mul_sub
add_sub_assoc
integral_sin_pow_even πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.instZero
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
Finset.prod
Real.instCommMonoid
Finset.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
pow_zero
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
mul_one
Finset.prod_div_distrib
div_self
NeZero.charZero_one
RCLike.charZero_rclike
Finset.prod_range_succ_comm
mul_left_comm
integral_sin_pow
Nat.cast_zero
Nat.cast_one
Nat.cast_add
Nat.cast_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
zero_le
Nat.instCanonicallyOrderedAdd
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Real.sin_zero
zero_pow
IsStrictOrderedRing.noZeroDivisors
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
Real.cos_zero
Real.sin_pi
Real.cos_pi
mul_neg
neg_zero
sub_self
zero_add
integral_sin_pow_even_mul_cos_pow_even πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
pow_mul
Real.sin_sq
Real.cos_sq
one_div
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.subst_add
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Nat.cast_one
integral_sin_pow_mul_cos_pow_odd πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instOne
β€”Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.prodMk
Continuous.pow
continuous_id'
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
pow_succ
pow_mul
pow_zero
one_mul
mul_assoc
sq
Real.cos_sq'
intervalIntegral.integral_comp_mul_deriv
Real.hasDerivAt_sin
Real.continuousOn_cos
integral_sin_pow_odd πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.instZero
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset.prod
Real.instCommMonoid
Finset.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
pow_one
integral_sin
Real.cos_zero
Real.cos_pi
sub_neg_eq_add
Nat.cast_one
Finset.prod_div_distrib
div_self
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Nat.cast_zero
mul_one
Finset.prod_range_succ_comm
mul_left_comm
integral_sin_pow
Nat.cast_add
Nat.cast_mul
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
add_pos'
Nat.instIsOrderedAddMonoid
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instNontrivial
zero_le
Nat.instCanonicallyOrderedAdd
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Real.sin_zero
zero_pow
IsStrictOrderedRing.noZeroDivisors
StarOrderedRing.toExistsAddOfLE
Nat.instStarOrderedRing
Nat.instCharZero
Real.sin_pi
mul_neg
neg_zero
sub_self
zero_add
integral_sin_pow_odd_mul_cos_pow πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.instOne
β€”Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.prodMk
Continuous.pow
continuous_id'
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
intervalIntegral.integral_symm
pow_succ
pow_mul
pow_zero
one_mul
mul_neg
neg_mul
intervalIntegral.integral_neg
sq
Real.sin_sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_atom
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
intervalIntegral.integral_comp_mul_deriv
Real.hasDerivAt_cos
ContinuousOn.neg
IsTopologicalRing.toContinuousNeg
Real.continuousOn_sin
integral_sin_pow_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”Nat.even_or_odd'
Nat.instAtLeastTwoHAddOfNat
integral_sin_pow_even
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Finset.prod_pos
Real.instZeroLEOneClass
Real.instNontrivial
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Nat.cast_zero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
RCLike.charZero_rclike
integral_sin_pow_odd
Real.instIsOrderedRing
integral_sin_pow_succ_le πŸ“–mathematicalβ€”Real
Real.instLE
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.instZero
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”pow_le_pow_of_le_one
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.sin_nonneg_of_mem_Icc
Real.sin_le_one
intervalIntegral.integral_mono_on
LT.lt.le
Real.pi_pos
Continuous.intervalIntegrable
Real.locallyFinite_volume
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.continuous_sin
integral_sin_pow_three πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
Real.cos
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”integral_sin_pow_odd_mul_cos_pow
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
pow_zero
mul_one
pow_one
one_mul
intervalIntegral.integral_sub
Real.locallyFinite_volume
Nat.cast_one
enorm_one
NormedDivisionRing.to_normOneClass
intervalIntegral.integral_const
Real.instCompleteSpace
integral_pow
Mathlib.Meta.NormNum.isNat_natCast
integral_sin_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
Real.sin
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Real.instAdd
Real.instMul
Real.cos
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
integral_sin_pow
zero_add
pow_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
one_div
pow_zero
intervalIntegral.integral_const
Real.instCompleteSpace
mul_one
add_sub_assoc
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
integral_sin_sq_mul_cos πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”integral_sin_pow_mul_cos_pow_odd
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
pow_one
pow_zero
mul_one
integral_pow
Mathlib.Meta.NormNum.isNat_natCast
Nat.cast_one
integral_sin_sq_mul_cos_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.sin
Real.cos
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Continuous.comp'
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id'
Real.continuous_cos
Continuous.fun_mul
continuous_const
Real.sin_two_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
pow_one
intervalIntegral.integral_div
intervalIntegral.integral_sub
Real.locallyFinite_volume
enorm_one
NormedDivisionRing.to_normOneClass
Continuous.intervalIntegrable
intervalIntegral.integral_const
Real.instCompleteSpace
mul_one
intervalIntegral.integral_comp_mul_left
integral_cos_sq
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
integral_sin_pow_even_mul_cos_pow_even
integral_sqrt_one_sub_sq πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.sqrt
Real.instSub
Real.instOne
Monoid.toNatPow
Real.instMonoid
Real.instNeg
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Real.sin_neg
Real.sin_pi_div_two
intervalIntegral.integral_comp_mul_deriv
Real.hasDerivAt_sin
Real.continuousOn_cos
Continuous.sqrt
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id'
intervalIntegral.integral_congr_ae
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
Real.cos_eq_sqrt_one_sub_sin_sq
le_of_lt
Set.mem_Ioc
Set.uIoc_of_le
neg_le_self
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_pos
pow_two
integral_cos_sq
Real.cos_pi_div_two
mul_one
Real.cos_neg
mul_neg
neg_zero
sub_self
zero_add
sub_neg_eq_add
add_halves
CharZero.NeZero.two
RCLike.charZero_rclike
integral_zpow πŸ“–mathematicalReal
Set
Set.instMembership
Set.uIcc
Real.lattice
Real.instZero
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toZPow
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
DivInvMonoid.toDiv
Real.instSub
Real.instAdd
Real.instIntCast
Real.instOne
β€”Nat.cast_zero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.rpow_intCast
Int.cast_one
integral_rpow

intervalIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
inv_mul_integral_comp_add_div πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”inv_smul_integral_comp_add_div
inv_mul_integral_comp_div πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”inv_smul_integral_comp_div
inv_mul_integral_comp_div_add πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”inv_smul_integral_comp_div_add
inv_mul_integral_comp_div_sub πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”inv_smul_integral_comp_div_sub
inv_mul_integral_comp_sub_div πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”inv_smul_integral_comp_sub_div
mul_integral_comp_add_mul πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instAdd
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_add_mul
mul_integral_comp_mul_add πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instAdd
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_mul_add
mul_integral_comp_mul_left πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_mul_left
mul_integral_comp_mul_right πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_mul_right
mul_integral_comp_mul_sub πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instSub
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_mul_sub
mul_integral_comp_sub_mul πŸ“–mathematicalβ€”Real
Real.instMul
intervalIntegral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instSub
MeasureTheory.MeasureSpace.volume
Real.measureSpace
β€”smul_integral_comp_sub_mul

---

← Back to Index