Documentation Verification Report

LogTrigonometric

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Integrals/LogTrigonometric.lean

Statistics

MetricCount
Definitions0
Theoremsintegral_log_sin_zero_pi, integral_log_sin_zero_pi_div_two
2
Total2

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
integral_log_sin_zero_pi πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Real.sin
Real.instZero
Real.pi
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
integral_log_sin_zero_pi_div_two
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
integral_log_sin_zero_pi_div_two πŸ“–mathematicalβ€”intervalIntegral
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.log
Real.sin
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.MeasureSpace.volume
Real.measureSpace
Real.instMul
Real.instNeg
β€”Nat.instAtLeastTwoHAddOfNat
intervalIntegral.integral_congr_codiscreteWithin
Filter.codiscreteWithin.mono
AnalyticOnNhd.preimage_zero_mem_codiscrete
PathConnectedSpace.connectedSpace
Real.instPathConnectedSpace
Real.analyticOnNhd_sin
Real.sin_pi_div_two
NeZero.one
Real.instNontrivial
Real.analyticOnNhd_cos
Real.cos_zero
Filter.mp_mem
Filter.univ_mem'
Real.sin_two_mul
Real.log_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
RCLike.charZero_rclike
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
intervalIntegral.integral_sub
IntervalIntegrable.sub
zero_div
IntervalIntegrable.comp_mul_left
PseudoEMetricSpace.pseudoMetrizableSpace
intervalIntegrable_log_sin
enorm_ne_top
intervalIntegrable_const
Real.locallyFinite_volume
intervalIntegrable_log_cos
intervalIntegral.integral_const
Real.instCompleteSpace
sub_zero
intervalIntegral.integral_comp_sub_left
sub_self
intervalIntegral.integral_comp_mul_left
two_ne_zero
CharZero.NeZero.two
MulZeroClass.mul_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
inv_mul_cancel_leftβ‚€
sub_sub_cancel_left
neg_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNat.to_raw_eq
CancelDenoms.neg_subst

---

← Back to Index