Documentation Verification Report

Base

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/Base.lean

Statistics

MetricCount
Definitionslogb
1
Theoremslogb, logb, logb, logb, logb, logb_prod, ceil_logb_natCast, continuousAt_logb, continuousAt_logb_iff, continuousOn_logb, continuous_logb, continuous_logb', div_logb, eq_one_of_pos_of_logb_eq_zero, eq_one_of_pos_of_logb_eq_zero_of_base_lt_one, floor_logb_natCast, induction_Ico_mul, inv_logb, inv_logb_div_base, inv_logb_mul_base, isBigO_log_const_mul_log_atTop, isBigO_log_mul_const_log_atTop, isBigO_logb_const_mul_log_atTop, isBigO_logb_log, isBigO_logb_mul_const_log_atTop, isLittleO_const_logb_atTop, isLittleO_logb_id_atTop, isLittleO_pow_logb_id_atTop, le_logb_iff_rpow_le, le_logb_iff_rpow_le_of_base_lt_one, log2_le_logb, log_div_log, logb_abs, logb_abs_base, logb_div, logb_div_base, logb_eq_iff_rpow_eq, logb_eq_zero, logb_injOn_pos, logb_injOn_pos_of_base_lt_one, logb_inv, logb_inv_base, logb_le_iff_le_rpow, logb_le_iff_le_rpow_of_base_lt_one, logb_le_logb, logb_le_logb_of_base_lt_one, logb_le_logb_of_le, logb_lt_iff_lt_rpow, logb_lt_iff_lt_rpow_of_base_lt_one, logb_lt_logb, logb_lt_logb_iff, logb_lt_logb_iff_of_base_lt_one, logb_lt_logb_of_base_lt_one, logb_mul, logb_mul_base, logb_nat_eq_sum_factorization, logb_ne_zero_of_pos_of_ne_one, logb_ne_zero_of_pos_of_ne_one_of_base_lt_one, logb_neg, logb_neg_base_eq_logb, logb_neg_eq_logb, logb_neg_iff, logb_neg_iff_of_base_lt_one, logb_neg_of_base_lt_one, logb_nonneg, logb_nonneg_iff, logb_nonneg_iff_of_base_lt_one, logb_nonneg_of_base_lt_one, logb_nonpos, logb_nonpos_iff, logb_nonpos_iff', logb_nonpos_iff_of_base_lt_one, logb_one, logb_one_left, logb_one_left_eq_zero, logb_pos, logb_pos_iff, logb_pos_iff_of_base_lt_one, logb_pos_of_base_lt_one, logb_pow, logb_prod, logb_rpow, logb_rpow_eq_mul_logb_of_pos, logb_self_eq_one, logb_self_eq_one_iff, logb_surjective, logb_zero, logb_zero_left, logb_zero_left_eq_zero, lt_logb_iff_rpow_lt, lt_logb_iff_rpow_lt_of_base_lt_one, mul_logb, natCeil_logb_natCast, natFloor_logb_natCast, natLog_le_logb, range_logb, rpow_logb, rpow_logb_eq_abs, rpow_logb_of_neg, strictAntiOn_logb, strictAntiOn_logb_of_base_lt_one, strictMonoOn_logb, strictMonoOn_logb_of_base_lt_one, surjOn_logb, surjOn_logb', tendsto_abs_logb_atTop, tendsto_logb_atTop, tendsto_logb_atTop_of_base_lt_one, tendsto_logb_comp_add_sub_logb, tendsto_logb_nat_add_one_sub_logb, tendsto_logb_nhdsGT_zero, tendsto_logb_nhdsGT_zero_of_base_lt_one, tendsto_logb_nhdsNE_zero, tendsto_logb_nhdsNE_zero_of_base_lt_one, tendsto_pow_logb_div_mul_add_atTop
115
Total116

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
logb πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.logbβ€”ContinuousOn.comp_continuous
Real.continuousOn_logb

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
logb πŸ“–mathematicalContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.logbβ€”Filter.Tendsto.logb

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
logb πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.logbβ€”ContinuousWithinAt.logb

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
logb πŸ“–mathematicalContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.logbβ€”Filter.Tendsto.logb

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
logb πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.logbβ€”comp
ContinuousAt.tendsto
Real.continuousAt_logb

Finsupp

Theorems

NameKindAssumesProvesValidatesDepends On
logb_prod πŸ“–mathematicalDFunLike.coe
Finsupp
instFunLike
Real.logb
prod
Real
Real.instCommMonoid
sum
Real.instAddCommMonoid
β€”Real.logb_prod
mem_support_iff

Real

Definitions

NameCategoryTheorems
logb πŸ“–CompOp
109 mathmath: Continuous.logb, Filter.Tendsto.logb, logb_zero_left, isLittleO_logb_id_atTop, logb_le_iff_le_rpow, logb_neg_of_base_lt_one, logb_one, log2_le_logb, strictAntiOn_logb, logb_le_logb_of_base_lt_one, natFloor_logb_natCast, logb_le_iff_le_rpow_of_base_lt_one, logb_inv, log_div_log, logb_mul, inv_logb_div_base, le_logb_iff_rpow_le, logb_lt_iff_lt_rpow, logb_eq_zero, range_logb, logb_eq_iff_rpow_eq, Finsupp.logb_prod, logb_surjective, ContinuousOn.logb, logb_prod, logb_neg_base_eq_logb, logb_zero_left_eq_zero, surjOn_logb', logb_div, logb_rpow_eq_mul_logb_of_pos, logb_abs_base, strictMonoOn_logb_of_base_lt_one, logb_self_eq_one, ContinuousAt.logb, logb_nat_eq_sum_factorization, logb_pos_of_base_lt_one, logb_lt_logb_of_base_lt_one, natCeil_logb_natCast, logb_pow, logb_neg_iff_of_base_lt_one, logb_self_eq_one_iff, continuousOn_logb, continuousAt_logb_iff, isBigO_logb_mul_const_log_atTop, logb_injOn_pos, rpow_logb_eq_abs, logb_nonneg_of_base_lt_one, logb_nonpos_iff_of_base_lt_one, logb_lt_logb_iff_of_base_lt_one, isBigO_logb_log, logb_lt_logb_iff, continuous_logb, logb_lt_iff_lt_rpow_of_base_lt_one, continuous_logb', mul_logb, tendsto_logb_atTop, rpow_logb, logb_one_left, strictMonoOn_logb, logb_one_left_eq_zero, logb_nonpos_iff', lt_logb_iff_rpow_lt, tendsto_logb_nhdsNE_zero_of_base_lt_one, logb_inv_base, inv_logb_mul_base, logb_le_logb_of_le, natLog_le_logb, rpow_logb_of_neg, strictAntiOn_logb_of_base_lt_one, tendsto_logb_atTop_of_base_lt_one, logb_nonneg_iff_of_base_lt_one, ContinuousWithinAt.logb, logb_injOn_pos_of_base_lt_one, ceil_logb_natCast, tendsto_logb_comp_add_sub_logb, logb_nonpos, surjOn_logb, logb_le_logb, floor_logb_natCast, logb_mul_base, logb_abs, logb_pos_iff_of_base_lt_one, logb_div_base, tendsto_abs_logb_atTop, tendsto_pow_logb_div_mul_add_atTop, logb_zero, tendsto_logb_nhdsGT_zero_of_base_lt_one, logb_nonpos_iff, continuousAt_logb, logb_lt_logb, logb_pos, logb_neg, isBigO_logb_const_mul_log_atTop, lt_logb_iff_rpow_lt_of_base_lt_one, div_logb, le_logb_iff_rpow_le_of_base_lt_one, logb_neg_iff, logb_neg_eq_logb, logb_nonneg_iff, isLittleO_const_logb_atTop, tendsto_logb_nhdsGT_zero, logb_rpow, isLittleO_pow_logb_id_atTop, inv_logb, tendsto_logb_nhdsNE_zero, logb_pos_iff, logb_nonneg, Rat.AbsoluteValue.le_pow_log, tendsto_logb_nat_add_one_sub_logb

Theorems

NameKindAssumesProvesValidatesDepends On
ceil_logb_natCast πŸ“–mathematicalReal
instLE
instZero
Int.ceil
instRing
linearOrder
instFloorRing
logb
instNatCast
Int.clog
Field.toSemifield
instField
FloorRing.toFloorSemiring
instIsStrictOrderedRing
β€”instIsStrictOrderedRing
LE.le.eq_or_lt
logb_zero
Int.clog_zero_right
Int.ceil_zero
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
RCLike.charZero_rclike
le_antisymm
Int.ceil_le
logb_le_iff_le_rpow
rpow_intCast
Int.self_le_zpow_clog
Int.le_zpow_iff_clog_le
Eq.trans_le
rpow_logb
LT.lt.trans
zero_lt_one
NeZero.charZero_one
LT.lt.ne'
rpow_le_rpow_of_exponent_le
LT.lt.le
Int.le_ceil
or_iff_not_and_not
CharP.cast_eq_zero
CharP.ofCharZero
logb_zero_left
Int.clog_zero_left
Nat.cast_one
logb_one_left
Int.clog_one_left
continuousAt_logb πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
logb
β€”ContinuousAt.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousAt_log
continuousAt_logb_iff πŸ“–mathematicalReal
instLT
instZero
ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
logb
β€”lt_or_gt_of_ne
not_tendsto_nhds_of_tendsto_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
punctured_nhds_module_neBot
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
tendsto_logb_nhdsNE_zero_of_base_lt_one
Filter.Tendsto.mono_left
ContinuousAt.tendsto
inf_le_left
not_tendsto_nhds_of_tendsto_atBot
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
instClosedIicTopology
tendsto_logb_nhdsNE_zero
continuousAt_logb
continuousOn_logb πŸ“–mathematicalβ€”ContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
logb
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
instZero
β€”ContinuousOn.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn_log
continuous_logb πŸ“–mathematicalβ€”Continuous
Real
instZero
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
logb
β€”Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_log
continuous_logb' πŸ“–mathematicalβ€”Continuous
Real
instLT
instZero
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
logb
β€”Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_log'
div_logb πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
logb
β€”div_div_div_cancel_left'
log_ne_zero
eq_one_of_pos_of_logb_eq_zero πŸ“–β€”Real
instLT
instOne
instZero
logb
β€”β€”logb_injOn_pos
Set.mem_Ioi
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_one
eq_one_of_pos_of_logb_eq_zero_of_base_lt_one πŸ“–β€”Real
instLT
instZero
instOne
logb
β€”β€”logb_injOn_pos_of_base_lt_one
Set.mem_Ioi
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_one
floor_logb_natCast πŸ“–mathematicalReal
instLE
instZero
Int.floor
instRing
linearOrder
instFloorRing
logb
instNatCast
Int.log
Field.toSemifield
instField
FloorRing.toFloorSemiring
instIsStrictOrderedRing
β€”instIsStrictOrderedRing
LE.le.eq_or_lt
logb_zero
Int.log_zero_right
Int.floor_zero
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
RCLike.charZero_rclike
le_antisymm
Int.zpow_le_iff_le_log
rpow_intCast
rpow_le_rpow_of_exponent_le
LT.lt.le
Int.floor_le
rpow_logb
LT.lt.trans
zero_lt_one
NeZero.charZero_one
LT.lt.ne'
Int.le_floor
le_logb_iff_rpow_le
Int.zpow_log_le_self
or_iff_not_and_not
CharP.cast_eq_zero
CharP.ofCharZero
logb_zero_left
Int.log_zero_left
Nat.cast_one
logb_one_left
Int.log_one_left
induction_Ico_mul πŸ“–β€”Real
instLT
instOne
instZero
instLE
β€”β€”zero_add
pow_one
Set.Ico_subset_Ico_union_Ico
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
LT.lt.trans_le
Set.mem_Ico
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
rpow_natCast
logb_lt_iff_lt_rpow
Nat.cast_add
Nat.cast_one
Nat.lt_floor_add_one
inv_logb πŸ“–mathematicalβ€”Real
instInv
logb
β€”inv_div
inv_logb_div_base πŸ“–mathematicalβ€”Real
instInv
logb
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”inv_logb
logb_div
inv_logb_mul_base πŸ“–mathematicalβ€”Real
instInv
logb
instMul
instAdd
β€”inv_logb
logb_mul
isBigO_log_const_mul_log_atTop πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
Filter.atTop
instPreorder
log
instMul
β€”eq_or_ne
MulZeroClass.zero_mul
log_zero
Asymptotics.IsLittleO.isBigO
isLittleO_const_log_atTop
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
Filter.univ_mem'
log_mul
LT.lt.ne'
Asymptotics.IsBigO.add
Asymptotics.isBigO_refl
isBigO_log_mul_const_log_atTop πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
Filter.atTop
instPreorder
log
instMul
β€”mul_comm
isBigO_log_const_mul_log_atTop
isBigO_logb_const_mul_log_atTop πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
Filter.atTop
instPreorder
logb
instMul
log
β€”div_eq_mul_inv
mul_comm
Asymptotics.IsBigO.const_mul_left
isBigO_log_const_mul_log_atTop
isBigO_logb_log πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
Top.top
Filter
Filter.instTop
logb
log
β€”logb_neg_base_eq_logb
logb_one_left_eq_zero
Asymptotics.isBigO_zero
logb_zero_left_eq_zero
div_eq_mul_inv
mul_comm
norm_mul
NormedDivisionRing.toNormMulClass
norm_inv
Asymptotics.IsBigO.const_mul_left
Asymptotics.isBigO_refl
isBigO_logb_mul_const_log_atTop πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
norm
Filter.atTop
instPreorder
logb
instMul
log
β€”mul_comm
isBigO_logb_const_mul_log_atTop
isLittleO_const_logb_atTop πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
Filter.atTop
instPreorder
logb
β€”Asymptotics.isLittleO_const_left
tendsto_abs_logb_atTop
isLittleO_logb_id_atTop πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
Filter.atTop
instPreorder
logb
β€”Asymptotics.IsLittleO.congr_left
isLittleO_pow_logb_id_atTop
pow_one
isLittleO_pow_logb_id_atTop πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
norm
Filter.atTop
instPreorder
Monoid.toNatPow
instMonoid
logb
β€”Asymptotics.isLittleO_iff_tendsto'
Filter.mp_mem
Filter.eventually_ne_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
Filter.univ_mem'
one_mul
add_zero
tendsto_pow_logb_div_mul_add_atTop
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
le_logb_iff_rpow_le πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logb
instPow
β€”rpow_le_rpow_left_iff
rpow_logb
le_logb_iff_rpow_le_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logb
instPow
β€”rpow_le_rpow_left_iff_of_base_lt_one
rpow_logb
log2_le_logb πŸ“–mathematicalβ€”Real
instLE
instNatCast
logb
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
RCLike.charZero_rclike
Nat.log2_eq_log_two
natLog_le_logb
log_div_log πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
log
logb
β€”β€”
logb_abs πŸ“–mathematicalβ€”logb
abs
Real
lattice
instAddGroup
β€”logb.eq_1
log_abs
logb_abs_base πŸ“–mathematicalβ€”logb
abs
Real
lattice
instAddGroup
β€”logb.eq_1
log_abs
logb_div πŸ“–mathematicalβ€”logb
Real
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”log_div
sub_div
logb_div_base πŸ“–mathematicalβ€”logb
Real
DivInvMonoid.toDiv
instDivInvMonoid
instInv
instSub
β€”inv_logb_div_base
inv_inv
logb_eq_iff_rpow_eq πŸ“–mathematicalReal
instLT
instZero
logb
instPow
β€”rpow_logb
logb_rpow
logb_eq_zero πŸ“–mathematicalβ€”logb
Real
instZero
instOne
instNeg
β€”β€”
logb_injOn_pos πŸ“–mathematicalReal
instLT
instOne
Set.InjOn
logb
Set.Ioi
instPreorder
instZero
β€”StrictMonoOn.injOn
strictMonoOn_logb
logb_injOn_pos_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
Set.InjOn
logb
Set.Ioi
instPreorder
β€”StrictAntiOn.injOn
strictAntiOn_logb_of_base_lt_one
logb_inv πŸ“–mathematicalβ€”logb
Real
instInv
instNeg
β€”log_inv
neg_div
logb_inv_base πŸ“–mathematicalβ€”logb
Real
instInv
instNeg
β€”log_inv
div_neg
logb_le_iff_le_rpow πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logb
instPow
β€”rpow_le_rpow_left_iff
rpow_logb
logb_le_iff_le_rpow_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logb
instPow
β€”rpow_le_rpow_left_iff_of_base_lt_one
rpow_logb
logb_le_logb πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logb
β€”logb.eq_1
div_le_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
log_pos
log_le_log_iff
logb_le_logb_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logb
β€”logb.eq_1
div_le_div_right_of_neg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
log_neg
log_le_log_iff
logb_le_logb_of_le πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logbβ€”logb_le_logb
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
logb_lt_iff_lt_rpow πŸ“–mathematicalReal
instLT
instOne
instZero
logb
instPow
β€”rpow_lt_rpow_left_iff
rpow_logb
logb_lt_iff_lt_rpow_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logb
instPow
β€”rpow_lt_rpow_left_iff_of_base_lt_one
rpow_logb
logb_lt_logb πŸ“–mathematicalReal
instLT
instOne
instZero
logbβ€”logb.eq_1
div_lt_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
log_pos
log_lt_log
logb_lt_logb_iff πŸ“–mathematicalReal
instLT
instOne
instZero
logbβ€”logb.eq_1
div_lt_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
log_pos
log_lt_log_iff
logb_lt_logb_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb.eq_1
div_lt_div_right_of_neg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
log_neg
log_lt_log_iff
logb_lt_logb_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb.eq_1
div_lt_div_right_of_neg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
log_neg
log_lt_log
logb_mul πŸ“–mathematicalβ€”logb
Real
instMul
instAdd
β€”log_mul
add_div
logb_mul_base πŸ“–mathematicalβ€”logb
Real
instMul
instInv
instAdd
β€”inv_logb_mul_base
inv_inv
logb_nat_eq_sum_factorization πŸ“–mathematicalβ€”logb
Real
instNatCast
Finsupp.sum
MulZeroClass.toZero
Nat.instMulZeroClass
instAddCommMonoid
Nat.factorization
instMul
β€”log_nat_eq_sum_factorization
Finset.sum_congr
Finset.sum_div
mul_div_assoc'
logb_ne_zero_of_pos_of_ne_one πŸ“–β€”Real
instLT
instOne
instZero
β€”β€”eq_one_of_pos_of_logb_eq_zero
logb_ne_zero_of_pos_of_ne_one_of_base_lt_one πŸ“–β€”Real
instLT
instZero
instOne
β€”β€”eq_one_of_pos_of_logb_eq_zero_of_base_lt_one
logb_neg πŸ“–mathematicalReal
instLT
instOne
instZero
logbβ€”logb_neg_iff
logb_neg_base_eq_logb πŸ“–mathematicalβ€”logb
Real
instNeg
β€”logb_abs_base
abs_neg
logb_neg_eq_logb πŸ“–mathematicalβ€”logb
Real
instNeg
β€”logb_abs
abs_neg
logb_neg_iff πŸ“–mathematicalReal
instLT
instOne
instZero
logbβ€”logb_one
logb_lt_logb_iff
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_neg_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb_one
logb_lt_logb_iff_of_base_lt_one
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_neg_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb_neg_iff_of_base_lt_one
lt_trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_nonneg πŸ“–mathematicalReal
instLT
instOne
instLE
instZero
logb
β€”logb_nonneg_iff
LT.lt.trans_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_nonneg_iff πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logb
β€”not_lt
logb_neg_iff
logb_nonneg_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logb
β€”not_lt
logb_neg_iff_of_base_lt_one
logb_nonneg_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logbβ€”logb_nonneg_iff_of_base_lt_one
logb_nonpos πŸ“–mathematicalReal
instLT
instOne
instLE
instZero
logbβ€”logb_nonpos_iff'
logb_nonpos_iff πŸ“–mathematicalReal
instLT
instOne
instZero
instLE
logb
β€”not_lt
logb_pos_iff
logb_nonpos_iff' πŸ“–mathematicalReal
instLT
instOne
instLE
instZero
logbβ€”LE.le.eq_or_lt
logb_zero
instZeroLEOneClass
logb_nonpos_iff
logb_nonpos_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
instLE
logb
β€”not_lt
logb_pos_iff_of_base_lt_one
logb_one πŸ“–mathematicalβ€”logb
Real
instOne
instZero
β€”log_one
zero_div
logb_one_left πŸ“–mathematicalβ€”logb
Real
instOne
instZero
β€”log_one
div_zero
logb_one_left_eq_zero πŸ“–mathematicalβ€”logb
Real
instOne
Pi.instZero
instZero
β€”logb_one_left
Pi.zero_apply
logb_pos πŸ“–mathematicalReal
instLT
instOne
instZero
logb
β€”logb_pos_iff
lt_trans
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_pos_iff πŸ“–mathematicalReal
instLT
instOne
instZero
logbβ€”logb_one
logb_lt_logb_iff
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_pos_iff_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb_one
logb_lt_logb_iff_of_base_lt_one
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
logb_pos_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logbβ€”logb_pos_iff_of_base_lt_one
logb_pow πŸ“–mathematicalβ€”logb
Real
Monoid.toNatPow
instMonoid
instMul
instNatCast
β€”logb.eq_1
log_pow
mul_div_assoc
logb_prod πŸ“–mathematicalβ€”logb
Finset.prod
Real
instCommMonoid
Finset.sum
instAddCommMonoid
β€”Finset.cons_induction_on
logb_one
Finset.prod_cons
logb_mul
instNontrivial
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Finset.sum_cons
logb_rpow πŸ“–mathematicalReal
instLT
instZero
logb
instPow
β€”logb.eq_1
div_eq_iff
log_ne_zero_of_pos_of_ne_one
log_rpow
logb_rpow_eq_mul_logb_of_pos πŸ“–mathematicalReal
instLT
instZero
logb
instPow
instMul
β€”logb.eq_1
log_rpow
mul_div_assoc
logb_self_eq_one πŸ“–mathematicalReal
instLT
instOne
logbβ€”div_self
LT.lt.ne'
log_pos
logb_self_eq_one_iff πŸ“–mathematicalβ€”logb
Real
instOne
β€”div_zero
NeZero.charZero_one
RCLike.charZero_rclike
div_self
log_ne_zero
logb_surjective πŸ“–mathematicalReal
instLT
instZero
logbβ€”logb_rpow
logb_zero πŸ“–mathematicalβ€”logb
Real
instZero
β€”log_zero
zero_div
logb_zero_left πŸ“–mathematicalβ€”logb
Real
instZero
β€”log_zero
div_zero
logb_zero_left_eq_zero πŸ“–mathematicalβ€”logb
Real
instZero
Pi.instZero
β€”logb_zero_left
Pi.zero_apply
lt_logb_iff_rpow_lt πŸ“–mathematicalReal
instLT
instOne
instZero
logb
instPow
β€”rpow_lt_rpow_left_iff
rpow_logb
lt_logb_iff_rpow_lt_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
logb
instPow
β€”rpow_lt_rpow_left_iff_of_base_lt_one
rpow_logb
mul_logb πŸ“–mathematicalβ€”Real
instMul
logb
β€”mul_comm
div_mul_div_cancelβ‚€
log_ne_zero
natCeil_logb_natCast πŸ“–mathematicalβ€”Nat.ceil
Real
semiring
partialOrder
FloorRing.toFloorSemiring
instRing
linearOrder
instIsStrictOrderedRing
instFloorRing
logb
instNatCast
Nat.clog
β€”instIsStrictOrderedRing
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
log_zero
div_zero
Nat.ceil_zero
Nat.clog_zero_left
zero_add
Nat.cast_one
log_one
Nat.clog_one_left
eq_or_ne
Nat.cast_add
logb_zero
Nat.clog_zero_right
Int.instCharZero
Int.natCast_ceil_eq_ceil
logb_nonneg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instZeroLEOneClass
NeZero.charZero_one
Nat.one_le_cast
ceil_logb_natCast
instIsOrderedRing
Int.clog_natCast
natFloor_logb_natCast πŸ“–mathematicalβ€”Nat.floor
Real
semiring
partialOrder
FloorRing.toFloorSemiring
instRing
linearOrder
instIsStrictOrderedRing
instFloorRing
logb
instNatCast
Nat.log
β€”instIsStrictOrderedRing
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
log_zero
div_zero
Nat.floor_zero
Nat.log_zero_left
zero_add
Nat.cast_one
log_one
Nat.log_one_left
eq_or_ne
Nat.cast_add
logb_zero
Nat.log_zero_right
Int.instCharZero
Int.natCast_floor_eq_floor
logb_nonneg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
instZeroLEOneClass
NeZero.charZero_one
Nat.one_le_cast
floor_logb_natCast
instIsOrderedRing
Int.log_natCast
natLog_le_logb πŸ“–mathematicalβ€”Real
instLE
instNatCast
Nat.log
logb
β€”le_trans
instIsStrictOrderedRing
floor_logb_natCast
Nat.cast_nonneg
instIsOrderedRing
Int.log_natCast
Int.cast_natCast
le_refl
Int.floor_le
range_logb πŸ“–mathematicalReal
instLT
instZero
Set.range
logb
Set.univ
β€”Function.Surjective.range_eq
logb_surjective
rpow_logb πŸ“–mathematicalReal
instLT
instZero
instPow
logb
β€”rpow_logb_eq_abs
LT.lt.ne'
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_logb_eq_abs πŸ“–mathematicalReal
instLT
instZero
instPow
logb
abs
lattice
instAddGroup
β€”log_injOn_pos
rpow_pos_of_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
log_rpow
logb.eq_1
log_abs
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
log_ne_zero_of_pos_of_ne_one
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
rpow_logb_of_neg πŸ“–mathematicalReal
instLT
instZero
instPow
logb
instNeg
β€”rpow_logb_eq_abs
ne_of_lt
abs_of_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
strictAntiOn_logb πŸ“–mathematicalReal
instLT
instOne
StrictAntiOn
instPreorder
logb
Set.Iio
instZero
β€”logb_abs
logb_lt_logb
abs_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.ne
abs_of_neg
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
strictAntiOn_logb_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
StrictAntiOn
instPreorder
logb
Set.Ioi
β€”logb_lt_logb_of_base_lt_one
strictMonoOn_logb πŸ“–mathematicalReal
instLT
instOne
StrictMonoOn
instPreorder
logb
Set.Ioi
instZero
β€”logb_lt_logb
strictMonoOn_logb_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
StrictMonoOn
instPreorder
logb
Set.Iio
β€”logb_abs
logb_lt_logb_of_base_lt_one
abs_pos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.ne
abs_of_neg
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
surjOn_logb πŸ“–mathematicalReal
instLT
instZero
Set.SurjOn
logb
Set.Ioi
instPreorder
Set.univ
β€”rpow_pos_of_pos
logb_rpow
surjOn_logb' πŸ“–mathematicalReal
instLT
instZero
Set.SurjOn
logb
Set.Iio
instPreorder
Set.univ
β€”IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_pos_of_pos
logb_neg_eq_logb
logb_rpow
tendsto_abs_logb_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
abs
lattice
instAddGroup
logb
Filter.atTop
instPreorder
β€”Filter.Tendsto.congr'
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
logb_nonneg
tendsto_logb_atTop
Filter.Tendsto.congr
logb_inv_base
abs_neg
inv_neg
inv_one
inv_zero
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
one_lt_invβ‚€
lt_of_not_ge
lt_or_gt_of_ne
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_of_not_gt
logb_neg_base_eq_logb
neg_neg
neg_zero
tendsto_logb_atTop πŸ“–mathematicalReal
instLT
instOne
Filter.Tendsto
logb
Filter.atTop
instPreorder
β€”Filter.Tendsto.atTop_div_const
instIsStrictOrderedRing
log_pos
tendsto_log_atTop
tendsto_logb_atTop_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
Filter.Tendsto
logb
Filter.atTop
instPreorder
Filter.atBot
β€”Filter.tendsto_atTop_atBot
instIsDirectedOrder
instIsOrderedRing
instArchimedean
logb_le_iff_le_rpow_of_base_lt_one
lt_of_lt_of_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_logb_comp_add_sub_logb πŸ“–mathematicalβ€”Filter.Tendsto
Real
instSub
logb
instAdd
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”sub_div
zero_div
Filter.Tendsto.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_log_comp_add_sub_log
tendsto_logb_nat_add_one_sub_logb πŸ“–mathematicalβ€”Filter.Tendsto
Real
instSub
logb
instAdd
instNatCast
instOne
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”Filter.Tendsto.comp
tendsto_logb_comp_add_sub_logb
tendsto_natCast_atTop_atTop
instIsOrderedRing
instArchimedean
tendsto_logb_nhdsGT_zero πŸ“–mathematicalReal
instLT
instOne
Filter.Tendsto
logb
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Set.Ioi
instPreorder
Filter.atBot
β€”Filter.Tendsto.atBot_div_const
instIsStrictOrderedRing
log_pos
tendsto_log_nhdsGT_zero
tendsto_logb_nhdsGT_zero_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
Filter.Tendsto
logb
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Set.Ioi
instPreorder
Filter.atTop
β€”Filter.Tendsto.atBot_mul_const_of_neg
instIsStrictOrderedRing
inv_lt_zero
IsOrderedRing.toPosMulMono
instIsOrderedRing
log_neg
tendsto_log_nhdsGT_zero
tendsto_logb_nhdsNE_zero πŸ“–mathematicalReal
instLT
instOne
Filter.Tendsto
logb
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.atBot
instPreorder
β€”Filter.Tendsto.atBot_div_const
instIsStrictOrderedRing
log_pos
tendsto_log_nhdsNE_zero
tendsto_logb_nhdsNE_zero_of_base_lt_one πŸ“–mathematicalReal
instLT
instZero
instOne
Filter.Tendsto
logb
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.atTop
instPreorder
β€”Filter.Tendsto.atBot_mul_const_of_neg
instIsStrictOrderedRing
inv_lt_zero
IsOrderedRing.toPosMulMono
instIsOrderedRing
log_neg
tendsto_log_nhdsNE_zero
tendsto_pow_logb_div_mul_add_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
logb
instAdd
instMul
Filter.atTop
instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instZero
β€”eq_or_ne
div_zero
MulZeroClass.mul_zero
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_mul_add_inv_atTop_nhds_zero
Filter.Tendsto.congr
div_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
tendsto_pow_log_div_mul_add_atTop
mul_ne_zero

---

← Back to Index