Documentation Verification Report

InvLog

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/InvLog.lean

Statistics

MetricCount
Definitions0
Theoremsderiv_inv_log, not_continuousAt_inv_log_neg_one, not_continuousAt_inv_log_one, not_differentiableAt_inv_log_zero
4
Total4

Real

Theorems

NameKindAssumesProvesValidatesDepends On
deriv_inv_log πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
log
DivInvMonoid.toDiv
instDivInvMonoid
instNeg
Monoid.toNatPow
instMonoid
β€”eq_or_ne
inv_zero
neg_zero
log_zero
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
div_zero
deriv_zero_of_not_differentiableAt
not_differentiableAt_inv_log_zero
inv_one
log_one
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
not_continuousAt_inv_log_one
inv_neg
neg_neg
log_neg_eq_log
not_continuousAt_inv_log_neg_one
deriv_fun_inv''
deriv_log'
not_continuousAt_inv_log_neg_one πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
log
instNeg
instOne
β€”not_continuousAt_inv_log_one
log_neg_eq_log
ContinuousAt.comp'
continuousAt_neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
not_continuousAt_inv_log_one πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
log
instOne
β€”HasDerivAt.tendsto_nhdsNE
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
HasDerivAt.congr_simp
inv_one
hasDerivAt_log
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.comp
Filter.tendsto_invβ‚€_nhdsNE_zero
log_one
not_continuousAt_of_tendsto
PerfectSpace.not_isolated
instPerfectSpace
nhdsWithin_le_nhds
Metric.disjoint_nhds_cobounded
not_differentiableAt_inv_log_zero πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
log
instZero
β€”IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
zero_add
log_zero
inv_zero
sub_zero
mul_comm
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
tendsto_log_mul_self_nhdsLT_zero
nhdsWithin_Ioo_eq_nhdsLT
neg_one_lt_zero
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
eventually_nhdsWithin_of_forall
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
log_neg
log_neg_eq_log
Filter.Tendsto.not_tendsto
tendsto_nhdsWithin_mono_left
nhdsLT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
instClosedIciTopology
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Filter.Tendsto.comp
tendsto_inv_nhdsGT_zero

---

← Back to Index