Documentation Verification Report

NegMulLog

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/NegMulLog.lean

Statistics

MetricCount
DefinitionsnegMulLog
1
Theoremsmul_log, concaveOn_negMulLog, continuous_mul_log, continuous_negMulLog, convexOn_mul_log, deriv2_mul_log, deriv2_negMulLog, deriv_mul_log, deriv_mul_log_zero, deriv_negMulLog, differentiableAt_negMulLog, differentiableAt_negMulLog_iff, differentiableOn_mul_log, differentiableOn_negMulLog, hasDerivAt_mul_log, hasDerivAt_negMulLog, leftDeriv_mul_log, mul_log_nonneg, mul_log_nonpos, negMulLog_def, negMulLog_eq_neg, negMulLog_mul, negMulLog_nonneg, negMulLog_one, negMulLog_zero, not_DifferentiableAt_log_mul_zero, not_continuousAt_deriv_mul_log_zero, rightDeriv_mul_log, strictConcaveOn_negMulLog, strictConvexOn_mul_log, tendsto_deriv_mul_log_atTop, tendsto_rightDeriv_mul_log_atTop
32
Total33

Real

Definitions

NameCategoryTheorems
negMulLog πŸ“–CompOp
17 mathmath: deriv_negMulLog, negMulLog_mul, continuous_negMulLog, negMulLog_nonneg, concaveOn_negMulLog, differentiableOn_negMulLog, binEntropy_eq_negMulLog_add_negMulLog_one_sub', negMulLog_one, negMulLog_eq_neg, negMulLog_def, differentiableAt_negMulLog, negMulLog_zero, strictConcaveOn_negMulLog, binEntropy_eq_negMulLog_add_negMulLog_one_sub, deriv2_negMulLog, differentiableAt_negMulLog_iff, hasDerivAt_negMulLog

Theorems

NameKindAssumesProvesValidatesDepends On
concaveOn_negMulLog πŸ“–mathematicalβ€”ConcaveOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
instPreorder
instZero
negMulLog
β€”StrictConcaveOn.concaveOn
strictConcaveOn_negMulLog
continuous_mul_log πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
β€”continuous_iff_continuousAt
ne_or_eq
ContinuousAt.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.continuousAt
continuous_id'
continuousAt_log
ContinuousAt.eq_1
MulZeroClass.zero_mul
mul_comm
nhdsWithin_univ
Set.ext
Set.Iio_union_Ioi
Set.union_singleton
nhdsWithin_union
nhdsWithin_singleton
tendsto_log_mul_self_nhdsLT_zero
rpow_one
tendsto_log_mul_rpow_nhdsGT_zero
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
log_zero
MulZeroClass.mul_zero
tendsto_pure_nhds
continuous_negMulLog πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
β€”negMulLog_eq_neg
Continuous.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
continuous_mul_log
convexOn_mul_log πŸ“–mathematicalβ€”ConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
instPreorder
instZero
instMul
log
β€”StrictConvexOn.convexOn
strictConvexOn_mul_log
deriv2_mul_log πŸ“–mathematicalβ€”Nat.iterate
deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
instInv
β€”inv_zero
deriv_zero_of_not_differentiableAt
not_continuousAt_deriv_mul_log_zero
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
Filter.mp_mem
eventually_ne_nhds
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
Filter.univ_mem'
deriv_mul_log
Filter.EventuallyEq.deriv_eq
deriv_add_const
deriv_log
deriv2_negMulLog πŸ“–mathematicalβ€”Nat.iterate
deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
instNeg
instInv
β€”negMulLog_eq_neg
deriv2_mul_log
deriv.fun_neg'
deriv_mul_log πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
instAdd
instOne
β€”deriv_fun_mul
deriv_id''
one_mul
deriv_log'
mul_inv_cancelβ‚€
deriv_mul_log_zero πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
instZero
β€”deriv_zero_of_not_differentiableAt
not_DifferentiableAt_log_mul_zero
deriv_negMulLog πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
instSub
instNeg
log
instOne
β€”negMulLog_eq_neg
deriv.fun_neg
deriv_mul_log
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
differentiableAt_negMulLog πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
β€”differentiableAt_negMulLog_iff
differentiableAt_negMulLog_iff πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
β€”not_DifferentiableAt_log_mul_zero
neg_mul
differentiableOn_negMulLog
DifferentiableWithinAt.differentiableAt
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
differentiableOn_mul_log πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
instZero
β€”DifferentiableOn.mul
Differentiable.differentiableOn
differentiable_id
differentiableOn_log
differentiableOn_negMulLog πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
negMulLog
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
instZero
β€”negMulLog_eq_neg
DifferentiableOn.neg
differentiableOn_mul_log
hasDerivAt_mul_log πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
instMul
log
instAdd
instOne
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
deriv_mul_log
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
hasDerivAt_deriv_iff
DifferentiableOn.differentiableAt
differentiableOn_mul_log
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
hasDerivAt_negMulLog πŸ“–mathematicalβ€”HasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
negMulLog
instSub
instNeg
log
instOne
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
deriv_negMulLog
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
hasDerivAt_deriv_iff
DifferentiableOn.differentiableAt
differentiableOn_negMulLog
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
leftDeriv_mul_log πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
Set.Iio
instPreorder
instAdd
instOne
β€”HasDerivWithinAt.derivWithin
HasDerivAt.hasDerivWithinAt
hasDerivAt_mul_log
uniqueDiffWithinAt_Iio
mul_log_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
instMul
log
β€”mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
LE.le.trans
zero_le_one
instZeroLEOneClass
log_nonneg
mul_log_nonpos πŸ“–mathematicalReal
instLE
instZero
instOne
instMul
log
β€”mul_nonpos_of_nonneg_of_nonpos
IsOrderedRing.toPosMulMono
instIsOrderedRing
log_nonpos
negMulLog_def πŸ“–mathematicalβ€”negMulLog
Real
instMul
instNeg
log
β€”β€”
negMulLog_eq_neg πŸ“–mathematicalβ€”negMulLog
Real
instNeg
instMul
log
β€”neg_mul
negMulLog_mul πŸ“–mathematicalβ€”negMulLog
Real
instMul
instAdd
β€”neg_mul
MulZeroClass.zero_mul
log_zero
MulZeroClass.mul_zero
neg_zero
mul_neg
add_zero
log_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
negMulLog_nonneg πŸ“–mathematicalReal
instLE
instZero
instOne
negMulLogβ€”negMulLog_eq_neg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_log_nonpos
negMulLog_one πŸ“–mathematicalβ€”negMulLog
Real
instOne
instZero
β€”log_one
MulZeroClass.mul_zero
negMulLog_zero πŸ“–mathematicalβ€”negMulLog
Real
instZero
β€”neg_zero
log_zero
MulZeroClass.mul_zero
not_DifferentiableAt_log_mul_zero πŸ“–mathematicalβ€”DifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
instZero
β€”not_differentiableWithinAt_of_deriv_tendsto_atBot_Ioi
DifferentiableAt.differentiableWithinAt
not_continuousAt_deriv_mul_log_zero πŸ“–mathematicalβ€”ContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
deriv
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
instMul
log
instZero
β€”not_continuousAt_of_tendsto
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
nhdsWithin_le_nhds
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
instIsOrderedAddMonoid
instNoBotOrderOfNoMinOrder
instNoMinOrderOfNontrivial
rightDeriv_mul_log πŸ“–mathematicalβ€”derivWithin
Real
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
Set.Ioi
instPreorder
instAdd
instOne
β€”HasDerivWithinAt.derivWithin
HasDerivAt.hasDerivWithinAt
hasDerivAt_mul_log
uniqueDiffWithinAt_Ioi
strictConcaveOn_negMulLog πŸ“–mathematicalβ€”StrictConcaveOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
instPreorder
instZero
negMulLog
β€”negMulLog_eq_neg
StrictConvexOn.neg
instIsOrderedAddMonoid
strictConvexOn_mul_log
strictConvexOn_mul_log πŸ“–mathematicalβ€”StrictConvexOn
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
instPreorder
instZero
instMul
log
β€”strictConvexOn_of_deriv2_pos
convex_Ici
instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instIsStrictOrderedRing
Continuous.continuousOn
continuous_mul_log
deriv2_mul_log
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
interior_Ici'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
tendsto_deriv_mul_log_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
deriv
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
Filter.atTop
instPreorder
β€”Filter.tendsto_congr'
Filter.EventuallyEq.eq_1
Filter.eventually_atTop
instIsDirectedOrder
instIsOrderedRing
instArchimedean
deriv_mul_log
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.atTop_add
instIsOrderedAddMonoid
instOrderTopologyReal
tendsto_log_atTop
tendsto_const_nhds
tendsto_rightDeriv_mul_log_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
derivWithin
DenselyNormedField.toNontriviallyNormedField
denselyNormedField
instAddCommGroup
NormedSpace.toModule
normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
log
Set.Ioi
instPreorder
Filter.atTop
β€”Filter.tendsto_congr'
Filter.EventuallyEq.eq_1
Filter.eventually_atTop
instIsDirectedOrder
instIsOrderedRing
instArchimedean
rightDeriv_mul_log
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.atTop_add
instIsOrderedAddMonoid
instOrderTopologyReal
tendsto_log_atTop
tendsto_const_nhds

Real.Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
mul_log πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.log
β€”Continuous.comp
Real.continuous_mul_log

---

← Back to Index