Documentation Verification Report

PosLog

πŸ“ Source: Mathlib/Analysis/SpecialFunctions/Log/PosLog.lean

Statistics

MetricCount
DefinitionsposLog, «termLog⁺»
2
Theoremshalf_mul_log_add_log_abs, log_of_nat_eq_posLog, monotoneOn_posLog, posLog_abs, posLog_add, posLog_def, posLog_eq_log, posLog_eq_log_max_one, posLog_eq_zero_iff, posLog_le_posLog, posLog_mul, posLog_nat_mul, posLog_neg, posLog_nonneg, posLog_norm_add_le, posLog_norm_sum_le, posLog_one, posLog_pow, posLog_prod, posLog_sub_posLog_inv, posLog_sum, posLog_zero
22
Total24

Real

Definitions

NameCategoryTheorems
posLog πŸ“–CompOp
39 mathmath: ValueDistribution.proximity_zero, posLog_norm_add_le, monotoneOn_posLog, Polynomial.logMahlerMeasure_of_degree_eq_one, circleAverage_log_norm_sub_const_eq_log_radius_add_posLog, Polynomial.logMahlerMeasure_X_sub_C, circleIntegrable_posLog_norm_meromorphicOn, Polynomial.logMahlerMeasure_X_add_C, posLog_sub_posLog_inv, posLog_neg, posLog_eq_log, posLog_eq_zero_iff, Polynomial.logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots, posLog_le_posLog, posLog_abs, posLog_def, circleAverage_log_norm_add_const_eq_posLog, intervalIntegrable_posLog_norm_meromorphicOn, posLog_zero, posLog_prod, ValueDistribution.proximity_zero_of_complexValued, ValueDistribution.proximity_const, circleAverage_log_norm_sub_const_eq_posLog, posLog_one, Polynomial.logMahlerMeasure_C_mul_X_add_C, posLog_eq_log_max_one, half_mul_log_add_log_abs, posLog_nonneg, circleIntegrable_posLog_norm_meromorphicOn_of_nonneg, log_of_nat_eq_posLog, posLog_pow, ValueDistribution.proximity_coe, posLog_sum, ValueDistribution.abs_characteristic_sub_characteristic_shift_le, ValueDistribution.proximity_top, posLog_nat_mul, posLog_mul, posLog_norm_sum_le, posLog_add
Β«termLog⁺» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
half_mul_log_add_log_abs πŸ“–mathematicalβ€”Real
instMul
instInv
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
log
abs
lattice
instAddGroup
posLog
β€”Nat.instAtLeastTwoHAddOfNat
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sup_of_le_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
abs_of_nonpos
LT.lt.le
add_neg_cancel
MulZeroClass.mul_zero
sup_of_le_left
log_of_nat_eq_posLog πŸ“–mathematicalβ€”posLog
Real
instNatCast
log
β€”CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
log_zero
max_self
posLog_eq_log
Nat.abs_cast
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
monotoneOn_posLog πŸ“–mathematicalβ€”MonotoneOn
Real
instPreorder
posLog
Set.Ici
instZero
β€”log_le_log
lt_trans
zero_lt_one
log_pos_iff
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
posLog_abs πŸ“–mathematicalβ€”posLog
abs
Real
lattice
instAddGroup
β€”log_abs
posLog_add πŸ“–mathematicalβ€”Real
instLE
posLog
instAdd
log
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
Fin.sum_univ_two
Matrix.cons_val_fin_one
add_assoc
Fintype.card_fin
posLog_sum
posLog_def πŸ“–mathematicalβ€”posLog
Real
instMax
instZero
log
β€”β€”
posLog_eq_log πŸ“–mathematicalReal
instLE
instOne
abs
lattice
instAddGroup
posLog
log
β€”log_abs
log_nonneg
posLog_eq_log_max_one πŸ“–mathematicalReal
instLE
instZero
posLog
log
instMax
instOne
β€”β€”
posLog_eq_zero_iff πŸ“–mathematicalβ€”posLog
Real
instZero
instLE
abs
lattice
instAddGroup
instOne
β€”posLog_abs
log_nonpos_iff
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
log_abs
posLog_le_posLog πŸ“–mathematicalReal
instLE
instZero
posLogβ€”monotoneOn_posLog
LE.le.trans
posLog_mul πŸ“–mathematicalβ€”Real
instLE
posLog
instMul
instAdd
β€”MulZeroClass.zero_mul
log_zero
max_self
zero_add
MulZeroClass.mul_zero
add_zero
log_mul
max_add_add_le_max_add_max
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
posLog_nat_mul πŸ“–mathematicalβ€”Real
instLE
posLog
instMul
instNatCast
instAdd
log
β€”log_of_nat_eq_posLog
posLog_mul
posLog_neg πŸ“–mathematicalβ€”posLog
Real
instNeg
β€”log_neg_eq_log
posLog_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
posLog
β€”β€”
posLog_norm_add_le πŸ“–mathematicalβ€”Real
instLE
posLog
Norm.norm
SeminormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
instAdd
log
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”le_imp_le_of_le_of_le
Nat.instAtLeastTwoHAddOfNat
posLog_le_posLog
norm_nonneg
norm_add_le
le_refl
posLog_add
add_rotate
posLog_norm_sum_le πŸ“–mathematicalβ€”Real
instLE
posLog
Norm.norm
SeminormedAddCommGroup.toNorm
Finset.sum
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
instAdd
log
instNatCast
Finset.card
instAddCommMonoid
β€”le_imp_le_of_le_of_le
posLog_le_posLog
norm_nonneg
norm_sum_le
le_refl
posLog_sum
posLog_one πŸ“–mathematicalβ€”posLog
Real
instOne
instZero
β€”log_one
max_self
posLog_pow πŸ“–mathematicalβ€”posLog
Real
Monoid.toNatPow
instMonoid
instMul
instNatCast
β€”pow_zero
posLog_one
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
MulZeroClass.zero_mul
posLog_eq_zero_iff
abs_pow
instIsOrderedRing
IsOrderedRing.toPosMulMono
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
MulZeroClass.mul_zero
instZeroLEOneClass
LT.lt.le
not_le
posLog_eq_log
log_pow
posLog_prod πŸ“–mathematicalβ€”Real
instLE
posLog
Finset.prod
instCommMonoid
Finset.sum
instAddCommMonoid
β€”Finset.induction
log_one
max_self
Finset.sum_congr
Finset.prod_insert
posLog_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_refl
Finset.sum_insert
posLog_sub_posLog_inv πŸ“–mathematicalβ€”Real
instSub
posLog
instInv
log
β€”posLog_def
log_inv
sup_of_le_right
sup_of_le_left
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sub_zero
neg_nonneg
Left.nonneg_neg_iff
LT.lt.le
sub_neg_eq_add
zero_add
posLog_sum πŸ“–mathematicalβ€”Real
instLE
posLog
Finset.sum
instAddCommMonoid
instAdd
log
instNatCast
Finset.card
β€”Finset.sum_congr
log_zero
max_self
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
add_zero
Finset.exists_max_image
posLog_abs
monotoneOn_posLog
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finset.sum_const
nsmul_eq_mul
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
Nat.cast_nonneg'
instZeroLEOneClass
abs_nonneg
Finset.sum_le_sum
posLog_nat_mul
add_le_add_right
Finset.single_le_sum
posLog_nonneg
posLog_zero πŸ“–mathematicalβ€”posLog
Real
instZero
β€”log_zero
max_self

---

← Back to Index